DT Fiir ey C)
AD-A227 852

CECOM
CENTER FOR SOFTWARE ENGINEERING
ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Distributed Issues for Ada
Real-Time Systems

CIN: C02 0921LA 0013 00
23 July 1990

DTIC

ELECTE
0CT11 1390

" DISTRIBUTION STATEMENT K Pﬁ

Appmndbwpub!ieﬂhulq
Distribution Unliited

4

. ? hd

REPORT DOCUMENTATION PAGE OPM NG, 5700188

1 howr o wre for FORNCDONS , SAErCIINg Guiating GElA SOLFORS PEBWIVY A
H&mwvnmdrmb;‘nﬂbm p--c-;..-m -M ” s
hmusuwu\nw-mmm muwmwmnummmq Sube 1204, mngm

Oftce

e y Ahairs. Ofios of Managernen anc Buopet. YWashingron, DC 20600
1. AGENCY USE ONLY (Lesve Biarw) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
23 July 1990 Final Keport
4. TITLE AND SUBTITLE . FUNDING NUMBERS
Distributed Issues for Ada Real-Time Systems MDA 903-87- C- 0056
. AUTHOR(S)

Thomas E. Griest

7. PERFORMING ORGANIZATION NAME (S} AND ADDRESS(ES) €. ?Egg%ih&ms%RGMlZAT)ON

Lab Tek Corporation

8 Lunar Drive
Woodbridge, CT 06525

§. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESSI(ES; 10. SPONSORINGMONITORING AGENCY

REPORT NUMBER
U. S. Army HQ CECOM
Center for Software Engineering
Fort Monmouth, NJ 07703-5000

11. SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABILITY STATEMENT 12c. DISTRIBL™ ION CODE

STATEMENT A UNLIMITED

13. ABSTRACT (Maximum 200 worcs)

-~ > This work addresses an approach to reduce the complexity of distributed syvstems by
extending the standard Ada tasking model to handle the distributed processing and by introducing
a failure model for reliability issues. It uses software developed in a previous CECOM research
project, the Border Defense System (BDS) distributed demonstration application. tha: addressed
the performance benefits that could be gained by the distribution of real-time Ada systems. To
achieve increased performance, a new approach to improving parallel execution was studied. The
approach was to create a data structure consisting of an array of tasks and distribute the elements
of the array across a set of processors. Performance benefits are then achieved as & function of the
available processors. A simple failure model appropriate for a class of/applications which can
lolerate interruptions irl_scrvice for up to one second was introduced. !

-

P

- A
’ ’ o f B
o ,
1¢. SUBKECT TERMS R , C e e e 15_Num§%(cl>' PAGES
ADA, REAL-TIME, DISTRIBUTED SYSTEMS, FAULT TOLERANCE , - |16 PRICECODE
47. SECURITY CLASSIFICAT IO 1&. SECURITY CLASSIFICATION 16. ScCURTTY CLASSIFICAT D 20. LIMTTATION OF ABSTRACZT
OF REPORT OF THIS PAGE OF ABSTRACT]
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 S1anoarc Fomm 24t (mev. £k,

Dmut-‘c v ANS. 12 23 1¢

.....

DISTRIBUTED ISSUES PROJECT
FINAL REPORT

PREPARED FOR:

U.S. Army HQ CECOM
Center for Software Engineering
Advanced Software Technology
Fort Monmouth, NJ 07703-5000

PREPARED BY:

LabTek Corporation
8 Lunar Drive
Woodbridge, CT 06525

DATE:
13 July1990

The views, opinions, and/or findings contained in this report are those of the
author and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

EXECUTIVE SUMMARY
The use of distributed systems to obtain gains in system throughput and reliability is
expected to continue for the foreseeable future. These systems provide substantial benefits
in performance and fault tolerance at the expense of significantly increased complexity.
This work addresses an approach to reduce the complexity of these systems by extending the
standard Ada tasking model to handle the distributed processor and reliability issues. It
uses software developed in a previous CECOM research project that addressed the

perfor.nance benefits that could be gained by the distribution of real-time Ada systems.

The Ada tasking model is already reasonably weil understood from a uniprocessor point of
view but it is currently not defined to support characteristics of distributed systems.
However, by taking advantage of the same model for distributed systems, fewer new
concepts need to be introduced. This reduction in concepts results in a less complex and
more flexible system. To achieve increased performance, a new approach to improving
parallel execution was studied. The approach was to create a data structure consisting of an
array of tasks and distribute the elements of the array across a set of processors. This task
array provides the ability to achieve performance benefits as a function of the available

Processors.

The Ada tasking model is currently silent on failure semantics. This study introduces a
simple failure recovery mechanism appropriate for a class of applications which can tolerate
interruptions in service for up to one second. Enhanced fault detection and recovery logic
have been added to demonstrate the ability to continue operation in the presence of some
hardware failures. To improve the flexibility of the system configuration, a new runtime

interface has been established to allow dynamic reconfiguration at runtime.

Table of Contents

L INEPOUCLION ...ttt e s e s aee e s aesassnesesssasnnsssesesstesasssasseessensensensesnones 1
2. Complexity of Distributed SYStemSot ae s s n s eaenss 2
3. Use of the Ada Tasking Model for Distributed Systemscccooevveernevnieineieneeceeenae 4
4. Responding to Failures in a Distributed Systemc..c.ccoovivmievenenininnieceee 6
S. Demonstration APPHCALIONcoooomioiiciricectcee et eee st na e s anns 8
5.1 Enhancements to the Demonstration Application Softwarec.cccoooevveiiiviennn. 9

5.2 Improvements to the Distributed Runtimeccooveeeeiveerieiiieiiicrceecceecven 10

5.2.1 Distribution Control Detailsc.ccccooeinniinniirnceceeeeeee 12

6. Performance CharacteriStiCsc.cociiiniiiiiererestenreeesseeeeneeresreesseeseesaessesseseesressesseesenns 15
6.1 Benchmark Results ... 17

6.2 Performance GaINS ...t sssssessesessssesessessstssassesssassesssseseseses 22

7. Design of Systems Using Distributed Adac.oooooreeereernieeeeeceeeeee e 25
7.1 Hardware Considerationsccooivereeeeieecsreveeeseneseeisseseseseeses eesessesessesessenns 25

7.2 Software Considerationsinnereninecreeiereereeseiesseesesssse e seesesee e seneens 26

7.3 Differences Between Distributed and Uniprocessor Implementations28

8. Limitations of the Distribution SUPPOTtccoovvvveiveriiiiineieneeeeecenreesre e D |
8.1 Task IdentifiCcation ..ot rens 31

8.2 Code RePLICALIONccuveviiirriictntet ettt se bbbt b s rsereetesne e eneere e D 2

8.3 NetWork Error RECOVETY ...ttt ettt sa st 32

9. Compiler and Runtime Problemsccoiiiiiiiiinicteicercce ettt 34
1O, SUMMATY ..ottt ettt reste st st a s e e s e e e se s e s e e asestaasesseseesaseesessenes 36
T1. REfEIENCESooniiiiiiiiiiiiiiiieietctetnte et ra e e saesaesae s e e e aesb et e s beesaaseassansessessesseaseeresbens 38
12. Appendix A - Border Defense System Ada Source Codecooovvveeeiviiveeveveeciicieinen 39
13. Appendix B - Distributed Runtime Source Codec.coceeeviniivieviieneeicieeeeereeeeereane 199

-i-

Figure 1. Software Subsystems
Figure 2. Top Level BDS Design

DTIC TAB]
Unannounced ()
Justification]

Accession For
NTIS GRA&I @?

By
Dispribut;onl_-
Availability Codes

Avall and/or
Special

Dist

W\

Table of Contents

...

-ii-

...............................

..

----------J

Distributed Issues Final Report

1. Introduction

this paper describes the results of a project to investigate issues in distributed Ada
programs. It is based on an earlier demonstration project done by the U.S. Army, Center for
Software Engineering at Fort Monmouth, NJ{1]. It goes beyond that initial work in two
important areas: using task arrays to expand parallelism; and improving the benefits of

program distribution beyond performance gains by providing support for fault tolerance.

The earlier project had statically allocated tasks to a processor, and each wask was unique,
based on a uniprocessor design. The new approach of using task arrays supports the
capability to spread the execution of independent iterative operations across a distributed
system. » The distributed runtime was re-implemented to provide much more flexible
reconfiguration capabilities. This made it possible to measure performance gains over a
wider set of configurations. The increased flexibility also made it possible for the system to

reconfigure under fault conditions and continue operation in a degraded mode.

This paper briefly outlines the application and its key performance characteristics used to
demonstrate use of the distributed Ada techniques. Improvements to the application are
mentioned, as well as enhancements to the distributed runtime system. Performance
benchmarks were done to assess the benefits obtained by distribution of a single Ada
program over a network of three Intel 80386 processors connected by an Ethernet. The
results of the benchmarks were analyzed to explain how the system reacted under various
processing loads and system configurations. These findings were further analyzed to identify
design considerations which can be used to improve performance for other distributed

applications.

Distributed Issues Final Report

2. Complexity of Distributed Systems

Systems which are distributed tend to be much more difficuit to develop than a single
processor implementation of the same problem. This is due to several contributing factors.
True parailelism creates new scheduling problems and new ways in which resource
contention can occur within systems. Distribution introduces the significant new
requirement of communication. This inter-processor communication is often at a much
higher data rate and less predictable than typical communication with external devices. For

this reason, buffering and synchronization become critical design considerations.

Adding to the problem of distributed real-time systems is the issue of maintaining a common
sense of time among all of the processors. Application software often becomes involved in
the process of keeping track of time and adjusting for time differences among processors.

This burden generally does not exist in uniprocessor applications.

Finally, distributed systems generally are constructed in an ad-hoc manner, creating a vast
number of dissimilar architectures. This effectively eliminates the mass market necessary to
encourage tool developers to support distributed systems. The result is that tools for
developing distributed systems are usually custom made and frequently lacking in capability.
Horror stories of developers using dozens of separate in-circuit emulators, each with their
own console to test distributed systems, are common. Thus the nature of distributed systems
simply adds to the difficulties of understanding and solving the complex problems which

arise during developmeni.

The benefits of distributed systems are found in essentially three fundamental
characteristics: performance, physical separation, and fauit tolerance. It is nearly always the

case that the price/performance ratio of computer hardware favors many lower cost

----------1

Distributed Issues Final Report

processors over a single higher performance processor. Furthermore, the ability to handle
interrupts by distributed processors reduces the number of context switches (and associated
overhead) required. This often results in better response time and overall performance by
having several lower cost processors concentrate on a single task rather than having one high

cost processor switching among many tasks.

The physical separation of processors provides the ability to have processing resources in
close proximity to isolated system hardware. This is often necessary to reduce the wiring and
provide a degree of autonomy between subsystems. This can be extremely important in
situations which may suffer from localized damage. Similarly, the additional processors
make it possible for continued operation in the presence of processor failures. Eliminating
all situations where a single component failure will result in system failure is a common

axiom of fault tolerant systems.

The growing number of distributed systems in use is evidence to the fact that the benefits of
these systems are significant even though there is additional complexity. Techniques that
reduce the complexity of these systems would further enhance their attractiveness and are

likely to lead to more cost-effective systems and widespread use of fault tolerant computing.

Distributed Issues Final Report
3. Use of the Ada Tasking Model for Distributed Systems

Several approaches are used to support cooperative processing on distributed systems. Most
frequently, a message-based mechanism of communication is defined to allow a program on
one processor to interface with programs on other processors. These messages are generally
developed in an application-specific way with a wide variety of characteristics and
requirements. Other techniques include some type of formalized remote procedure call

approach with surrogate tasks to execute the procedures that are remotely invoked.

The approach used on this demonstration was to utilize the Ada tasking model of
concurrency for all local and remote communication between parallel threads of execution.
This approach to concurrency is often referred to as "Distributed Ada" and has a number of

advantages to other approaches. Among them are:
1) The ability of the compiler to check interfaces between physical processors.

2) A consistent approach to parallelism - all concurrent activities are expressly stated

with a consistent formal mechanism making the system less complex.

3) Re-configuration is facilitated, since the interface between communicating tasks on
a processor is the same as that among separate processors, thus allowing tasks to be

migrated more easily.

4) Consistency helps to muke distributed testing and debugging more easily supported
by compiler implementers. Ad hoc approaches make debugging tools prohibitively

expensive and generally not as complete.

I EE ER BN Lm SR BN SN BN BE SR OGN Su SE G e e o

-

Distributed Issues Final Report

By utilizing the Ada tasking model, the underlying details for remote communication and
maintaining a consistent sense of time are hidden. Since there is a stable model to support,

this also creates the possibility for system vendors to provide hardwars that is optimized to

support distribution of Ada tasks.

The benefits of providing a well understood, uniform approach to concurrent programming
should not be underestimated. The ability for developers to have a clear understanding of
how their distributed system interacts is essential in lowering the costs and improving the
reliability of these systems. From this pcint of view, using the Ada tasking model for
distributed communication and synchronization provides the best opportunity for

consistency when programming in the Ada language.

Distributed Issues Final Report
4. Responding to Failures in a Distributed System

The potential to tolerate processor failures is a side-effect of having a distributed system.
Frequently this potential is not realized due to the complexity of supporting the detection,
isolation, and recovery mechanisms required for fault-tolerant processing. However, safety
or mission-critical applications require fault-tolerance and therefore must accept the

additional complexity.

The requirements for fault-tolerance can vary from system to system, and the corresponding
implementation to support those requirements is substantially different. One of the critical
factors is the time in which operations are allowed to be interrupted. Systems that cannot
tolerate any interruption in service must perform calculations redundantly and decide which
results to accept. More typically, systems are allowed to fail for a few seconds providing that
they can come back in service correctly. For these systems, migration of services from failed

processors to operational ones is often sufficient to maintain acceptable performance.

The degree to which information is lost (and/or corrupted) during failures also impacts the
architecture of the system. The use of stable storage techniques to prevent loss of data is a
common approach to continue in the presence of processor failures. This approach
checkpoints data to a stable storage area (usually made from redundant memory modules)
which is accessible from other processors. If one of the processors fails, another processor
can generally carry on from the last checkpoint made by the failing processor. Obviously the
amount of time lost due to a failure has a direct relationship on how frequently checkpoints
must be made. On the other hand, preventing corruption of data depends on detecting the
faults early and preventing the errors from propagating into other portions of the system.

This technique is often referred to as establishing "fire walls".

-

Distributed Issues Final Report

Most failures can be detected by comparing the results of redundant operations, the use of
check codes in data, or by using timers to insure that operations complete in their required
times. Depending on the type of fault and its detection scheme, the recovery may be as
simple as selecting the most likely value based on a majority vote of redundant
computations; or it may be a complex process of retries and judgments made on confidence
levels in components associated with the failure. The diversity in fault-tolerance
requirements and the associated techniques to support them precludes a standard approach
to fault-tolerant applications. Instead, flexibility for designers is necessary to allow the
method of support to closely match the requirements. For this reason, the demonstration
system includes the ability to have application software interface to the configuration control
software. (More information on Fow faults are detected and handled in the demonstration
system is provided at the end of section 5.2.) It is clear that many applicatiors will require
the ability to have the logic to support fault-tolerance shared between application-specific

software and general fault-tolerance software in the runtime.

Distributed Issues Final Report
5. Demonstration Application

To adequately demonstrate the effective use of distributed processing, a real-time
application was required to provide a test case program. A _ynthetic application titled the
"Border Defense System (BDS)" which combines target tracking, rocket guidance, and
graphics was developed to provide a suitable real-time test. A simulator was included to
provide rocket and target motion.
The main characteristics of the BDS are summarized below:
- Hard Deadline Driven application: failure to meet timing requirements will result in
mission failure.
- "Processor in the Loop" flight control with dynamic target tracking.
- Complex problem, with interac. . among several different functional areas:
Message Reception (from Sensor Interface and Airborne Rockets)
Multiple Target Tracking and Prediction
Multiple Rocket Tracking and Guidance
Real-Time Graphics Updates

Real-Time Operator Interface (peak data rate of S00Hz)

- Using current technology: 32-bit Microprocessors (80386-16MHz)

- Initially a separate program was designated for the <imulator, however it was
temporarily incorporated into the system as additional tas..s and placed on a separate
processor using the distribution technique.

- All application concurrency is expressed using the Ada Tasking Model (Rendezvous)
exclusively.

- The program consists of approximately 6700 Ada LOC contained within 51
compilation units. A copy of the BDS source code is provided in Appendix A.

- The distributed runtime is implemented with 5242 assembly language statements (for
compatibility with the vendor runtime) contained in 10 modules. A copy of the
distributed runtime source code is provided in Appendix B.

—

Distributed Issues Finai Report

All calculations for both the rockets and targets are done in three dimensional space,
however the target simulator currently maintains a constant altitude (Z=0) for the target
motions. Each of the aimpoint calculations are computed every 100ms for all of the rockets
in flight. On the 16MHz Intel 386 processor the computations currently require

approximately 6ms per rocket.
5.1 Enhancements to the Demonstration Application Software

In addition to the fault tolerance and distributed processing capabilities, the demonstration
software was enhanced in two ways. First, the rocket simulation algorithms were made
much more realistic (and therefore complex). Second, the flight control system was
redesigned to be oriented towards a realistic feedback system, that is, the software adjusts
the rocket flight based on the effect of previous flight control commands. Previously, the
rocket simulator made instantaneous flight corrections rather than corrections based on
normal accelerations. This allowed a guidance routine that simply aimed the rocket at the
target. A side effect of the feedback approach is an increased sensitivity to (ie. lack of
tolerance for) incorrect tracking of the rocket motion. Errors can occur during overload
situations where rocket reports can be lost. When this does happen, the rockets become

unstable and their flight paths become very erratic.

Accuracy was improved by utilizing 32-bit fixed point types throughout most of the trajectory
calculations rather than 16-bit fixed point. Custom fixed point routines were developed that
provided substantially better performance than those in the native runtime system which
were designed for a 16-bit machine. The rocket guidance equations now utilize 3rd-order
processing, which is required to provide the desired accuracy. To provide some insight into
what processing is done for rocket guidance, the following computations are¢ pertormed for

each rocket update:

Distributed Issues Final Report

1) The relative (closing) velocities and accelerations of the rocket/target pairings are

computed and an estimated impact point is predicted.

2) The rocket’s desired velocity vector is then computed and compared to the current

velocity vector.

3) Based on the velocity differentials, the desired acceleration is compared to the
current rocket acceleration. This provides a desired change in acceleration which is

then used to determine the adjustment required in the rocket’s attitude.

4) The flight profile is smoothed by integrating the attitude adjustment over a period,
which is computed as a function of estimated "time-to-impact”. This reduces

"overshoot" of the glide slope and had a major beneficial effect on the rocket accuracy.
5.2 Improvements to the Distributed Runtime

Several major changes were made to the underlying distributed runtime. In general, the
changes can be classified as enhancements to the configuration flexibility of the system. In
particular, the system now is capable of dynamically altering the configuration during system
execution. Figure 1 (on the following page) shows the subsystems that make up the entire
program which is replicated on each processor. It is shown as being layered from the top
application code down through successive levels of abstraction. Conversely, control is
passed up through the levels towards the application. Upon initialization, control is given to
the System Configuration Setup & Control module which passes control to the distributed
runtime. It in-turn transfers control to the vendor runtime which elaborates and activates

the application software.

-10-

y

Distributed Issues Final Report

Software Subsystems

- 7 I 7
:BDS: :SIMULATDR=
SRR SR N |

\

VENDOR RUNTIME

Y

DISTRIBUTED
RUNTIME

Network &
|Foﬂure Detectwn‘
L 1

SYSTEM CONFIGURATION
SETUP & CONTROL

{Eonﬂgurohon hﬁerFac;}

Figure 1. Software Subsystems

-11-

Distributed Issues Final Report

Application subprograms request service from the vendor runtime which passes the service
request to the distributed runtime. Using a task directory built by the System Configuration
Setup & Control module, the distributed runtime determines if the service involves
distributed resources. If not, control is returned to the vendor runtime. If the service does
involve distributed resources, the distributed runtime carries out the service using its own

tasking primitives and the Network Services module.

The Network & Failure Detection module is capable of detecting communication errors or
the apparent loss of a processor by using timers with acknowiedgement messages and a
"heartbeat” mechanism. This mechanism monitors activity from each of the processors. If
no activity occurs within a specified period or an acknowledgement is not returned in time, a
failure condition exists and failure recovery is initiated. Failure recovery essentially stops
application processing and returns control to the System Configuration Setup & Control

module.
5.2.1 Distribution Control Details

Each processor initializes the underlying hardware based on what is available in the
machine. The Ethernet hardware contains a unique network station address (in Read-Only
Memory) which is then used in a table look-up to determine the logical processor ID. The
processor ID is then used to determine which processor is the Master (controlling) CPU and
which arc the Slaves. The Master is distinguished from the Slaves in that it is responsible for
the distributed system Configuration Interface and the system-wide synchronization during

start up.

The Master processor prompts the user through a menu system which aliows configuration

of system parameters. These parameters include:

-12-

----------J

Distributed Issues Final Report

the maximum number of rockets;
the maximum number targets;
which (of four possible) configurations to use; and

enabling automatic reconfiguration.

If automatic reconfiguration is enabled, a delay may be selected to allow a user to see the

error condition for five seconds.

Most of this information is made available to the application via a distributed runtime
interface package. For example, it is possible for an application routine to determine if it is
running on the Master CPU by testing a boolean variable in the interface. This information
can be used by the main program which is activated on all processors to perform machine
specific operations. In the case of the BDS it is used to control initialization of the operator
interface which only runs on the Master CPU. In addition, the number of Rockets and
Targets, and the size of the configuration specific task array is made available. In some
sense, these variables can be thought of as parameters to the main program, similar to many
host-based Ada program invocations where the command line is provided to the application
program as a parameter to the main subprogram. One important distinction from main
program parameters is that the runtime package interface is available during the elaboration
of other application packages. This allows the size of non-static objects, such as the

constraints of the task array, to be based on configuration information.

The configuration selected during setup determines two important aspects of the distributed
system: where the tasks are to be resident and how many tasks are to be allocated in
application task arrays. Since the same code is present on all processors, a directory is used
to determine where they are to be located. The tasks are effectively made remote by

suspending them during their normal activation process. A future enhancement could be to

-13-

Distributed Issues Final Report

add a ‘self-sizing" mode that would have the master processor search for available

processors on start up and after failures and utilize as many as are available.

-14-

y

Distributed Issues Final Report
6. Performance Characteristics

The BDS system has been tested to execute on one, two, and three processor configurations.
When distributed onto two processors, the simulation tasks run on the second processor.
When the third processor is added, the size of an unconstrained task array is increased from
one to two, and the second task element of the array is located on the third processor. These

tasks in the array divide up the work load of computing the rocket guidance equations.

The performance of the system under different processing loads was studied by collecting
timings which reveal the ability of the system to meet the 100ms deadline for computing the
next rocket guidance command. A significant portion of this computation is the time it takes
to compute the individual aimpoints. This was measured to be approximately éms, but
varies based on the actual values of the variables in the equations. The variation is due to
the algorithm used for square-root which is iterative and will terminate when the current
value is known to be within an error bound; and because the multiply and divide machine

instructions vary in execution time.

Two important aspects of the timing analysis are the relationships among tasks and the
ability to achieve performance gains even with these inter-dependencies. To illustrate this

point, a brief description of the sequence of activities for rocket control must be presented:

1) Each rocket control cycle starts with the reception of new rocket flight information.
This arrives during a rendezvous with a report buffer task which relays the information
from the simulator. Normaily, the control task is suspended while waiting for the
buffer task to rendezvous, indicating the presence of a new rocket report. When the

report arrives, it is provided to the control task and it begins the cycle of computation.

-15-

Distributed Issues Final Report

2) The first part of the computation is a correlation step where the current report is
correlated to previous reports to create a tracking history. New rocket launches are
detected and their histories are initialized. Also, rocket detonations are detected and
they are marked as destroyed. Current counts of active and destroyed rockets are
maintained and passed on to a status task which updates the screen statistic values.
During the correlation processes, a "move” list is generated for updating the rocket

symbol positions on the display.

3) Once the correlation has completed, the guidance tasks are given the rocket and
target histories which are used to generate the new trajectory data. The guidance
tasks are then allowed to run through the trajectory calculations to produce a new

aimpoint for each rocket.

4) The control task continues to run in parallel with the guidance tasks after providing
them with the information they need. It takes the "move" list generated during the

correlation and provides it to the display task.

5) The control task then searches the target list to select the next ideal target if the
automatic firing mode is selected and there is an available rocket. (The automatic
firing mode indicates that the BDS is to select the next target rather than having the

operator select the next target.)

6) The control task then awaits completion of all guidance computations. When the
new aimpoints are provided to the control task, it then rendezvous with a guide buffer
task which relays the guidance message to the rocket simulator. This completes the

timed cycle of interest.

-16-

Distributed Issues Final Report

Note that the guidance tasks form a task array which is only one element in size for the one
and two processor configurations, but expands to two tasks in the three processor
configuration. This distributes the work load of aimpoint computations among two
processors and allows the system to support additional simultaneous rocket flights without

missing the measured 100ms deadline.
6.1 Benchmark Results

All measurements were taken with 40 active targets. During normal conditions, rocket
accuracy was observed to be nearly 99 percent; that is, around one (1) target missed for
every 100 rockets expended. In overload conditions where the deadline was missed, rocket
accuracy dropped to nearly O percent resulting in every rocket missing. The BDS consisted
of 11 conventional tasks, an unconstrained array of guidance tasks, and the main program.
The entry calls made between the tasks are shown in Figure 2. For specific details of system
operation, refer to documentation included in the application source code which is provided

in Appendix A. A general description of the tasks are provided below (in decreasing priority

order).

In_Char task Accepts input from the mouse device (mouse interrupt task).

Save task Buffers mouse data for controlling reticle updates.

Display task Performs all graphics display updates.

Track_Data task Buffers target position information between the target tracker and

the rocket control task.

-17-

Report_Buf task

Guide_Buf task

Rock_Sup task

Targ_Sup task

Control task

Guidance task

Track task

Update task

Bds procedure

Distributed Issues Final Report

Buffers rocket position reports from the simulator to the rocket

control task (part of the simulator).

Buffers rocket guidance commands from the rocket control task to

the simulator (part of the simulator).

Implements the rocket flight simulation (part of the simulator).

Generates and moves simulated targets (part of the simulator).

Provides overall control for rocket monitoring and tlight updates.

Called by the rocket control task to compute flight guidance

aimpoints (this is an array of tasks).

Produces target tracking information for the display and rocket

control tasks.

Updates the statistical status information on the screen.

Main program used to initialize system operation.

-18-

Ma th

Rocket

Distributed Issues Final Report

Top Level Design

Control

Rocket_
Quicle

L/

Dotted Line
Indicates Entry Cal

Status Misc,
Update Data ‘
7 Troject
] |
Engage
Grid _to_Fixel
Machine
Shapes
Mouse I Config |
Interrupt Buffer | _—
/ . g -
iorqget
Track
Graphics

Display

Va /

i - /

Track_Tata
A

- -

N —

L

Simulate
RDL Sensor

CE%k§“E;7 Targ_Swu
Py Report_Buf L
-

1 Gude_Buf 74

—

Figure 2. Top Level BDS Design

-19-

Distributed Issues Final Report

The measured time is the period that begins when the rocket report becomes available to
the control task and ends when the guidance message is provided to the simulator. The
allowable time for this has been established as 100ms based on the rocket update
characteristics. Successive measurements were taken increasing the number of rockets until

either the deadline was missed, or until the number of rockets reached 20. The tested

configurations are as follows:

1 Processor : all tasks are resident
2 Processors : the simulator tasks are on the 2nd CPU
3 Processors : the simulator is on the 2nd CPU, the second

guidance task is on the 3rd CPU

of Processers # of Rockets Time to complete 100ms Cycle
1 S jo ms
1 10 105 ms
2 5 38 ms
2 10 77 ms
2 15 118 ms
3 5 41 ms
3 10 73 ms
3 15 79 ms
3 20 90 ms

Extrapolated Saturation Points for Each Configuration:

Processors # Rockets
1 9
2 13
3 22

Several observations on the benchmark results can be made. Because the simulator does
not participate in the rocket control calculations, and the system is lightly loaded during the

control of up to S rockets, there is no performance benefit in increasing from 1 to 2 CPUs

-20-

S G BN B B B B B B A B e =

Distributed Issues Final Report

with only S rockets to control. When the number of rockets rises to 10, the dual-CPU system
shows a substantial benefit over the single-CPU configuration because both the control

computations and simulator computations increase as a function of the number of rockets.

The dual-CPU configuration misses its deadlines when more than 13 rockets become
airborne. This is roughly a 44% gain in the number of rockets supported with the
single-CPU configuration. The three-CPU configuration is expected to miss its deadlines
when more than 22 rockets become airborne. This is roughly a 1449 gain over a
single-CPU and a 69% gain over the two-CPU configurations. The performance benefits
are not linear because only segments of the application are being distributed. and because

precedence relationships among the tasks restrict full processor utilization.

Not measured in the benchmarks is the performance of lower priority tasks which are much
more substantially impacted during increased processing load. The low priority tasks are the
first to relinquish the processor and therefore will suffer first in overload conditions. For
example, the task responsible for updating the display statistics begins to starve when only 3
rockets are launched on the single-CPU configuration. In comparison, it continues to run
(although at lower frequency) even during overload conditions on the dual and triple
processor configurations. The extended life of the lower priority tasks is primarily due to the

additional "background"” cycles available on the multiple CPU configurations.

It is also due to the I/O blocking time during network communications. That is, while the
high priority task waits for access to the network resource, it is blocked from exccution which
allows lower priority tasks to run. This is one interesting aspect of a distributed system that
is not present in shared-memory multiprocessors or single processors. This 1/O blocking
time has the effect of transferring some execution time directly from high-priority tasks

(performing network communications) to other tasks on the system. To the extent that the

Distributed Issues Final Report

I/O blocking time exceeds the processing time required by middle priority tasks, or if the
middle and high priority tasks block in contention for the network, then very low priority
tasks can be allowed to run. This phenomenon is observed in the demonstration project by
the low priority task updating the status display even while high priority tasks miss their
deadlines in the multiple processor configurations. The I/O blocking time during rocket
"get_report” and "put_guidance" communications is estimated at under 2ms per 100ms cycle.

This 2% CPU time is sufficient to prevent starvation in the low priority tasks.
6.2 Performance Gains

A common objective discussed for parallel systems is to achieve "scalable" increases in
performance. This term implies that when processing resources are added, the "usefui’
processing increases by a constant factor of the number of processors. For example, for a
scale factor of 0.9, then if five times the processors are used, this will result in 4.5 times the
useful processing that will be accomplished. This type of measurement is typically applied to
computations where the time the computation takes place is only relevant because "~omeone
is waiting for the final output of a very large set of computations. However in real-time
systems, consistent meeting of short-term deadlines is the measure of performance. For this

reason, the conventional sense of "scalable” performance is not totally appropriate.

A real-time system that always meets its deadlines with one processor will not perform
better when adding additional processors. It is much more typical that a basic accuracy
specification must be met and no benefit is gained by exceeding ii. In the<e cases just
meeting the deadline is as good as meeting the deadline in half the required :ime. The only
benefit is the excess capacity which allows future expansion. However, there is a class of
algorithms that increase their accuracy based on the amount of time available to execute

which might benefit from additional processing resourccs. So except for reliability concerns

22-

Distributed Issues Final Report

and special purpose algorithms, performance can and often does get worse because of

communication overhead.

On the other hand, when processing demands limnit the capacities of an embedded system,
there is potential for substantial benefits to be gained by using additional processors. This is
because there are often fixed and variable components to the processing required for system
operation. In the BDS, fixed components include the status update, rocket control and
report message formatting and transmission, sensor message reception, graphics reticle
motion, and runtime overhead (primarily context switching). All of these operations did not
vary with the number of targets o1 rockets supported. Since the additional processing is
applied to the variable portion, the increase in system capacity can greatly exceed the
increase in processing resources. We refer to this increase in performance as "leveraged
performance”. In particular, if a system is 70% utilized due to fixed processing
requirements, only 30% remains to perform the functions identified as the principal system
mission. This 30% can be highly leveraged by adding an additional processor to achieve a
nearly 300% increase in system capacity. This characteristic is not clearly evident in the
demonstration benchmarks because the tests were taken without the user interface being
active and because the target support processing is quite low. The user interface includes
moving the reticle which can increase system load by up to 20%, but without a mouse
simulator to provide constant simulated motion, it was decided to test the system without the
effects of the user interface. The result is that the fixed processing for the demonstration

benchmarks was rather low.

The benchmark results are also somewhat biased by a decision to locate only the simulator
tasks on the second processor. This resulted in considerable idie time on the second

processor which could have been used to do additional rocket calculations. The reason for

223-

J

Distributed Issues Final Report

the decision was to insure the accuracy of the simulation by making sure that nothing
interfered with the simulator’s processing. A similar effect was created on the three-CPU
configuration by choosing a processing balance between the two guidance tasks that was not
optimal. Ideally, the two distributed computations would complete at roughly the same
time, but the balance selected caused one to finish earlier than the other. The incorrect
balance was made because of uncertainties in all of the timing factors that make up the
processor loading. Further work is necessary to facilitate an automatic method of

determining the optimal configuration for performance.

Thus this study identified two major beneficial factors when considering the use of

additional processing resources:

1) When there is a large processing requirement for fixed overhead operations and the
addition of processing resources can be applied to the mission-specific processing,
which is otherwise limited by the available resources, there can be a leveraged benefit

to the system capabilities.

2) When there is the potential for several independent sets of calculations to be
performed, the performance increase can be etfectively spread over a moderate

number of CPUs, limited by the capacity of the network.

The ability to scale-up to a very large set of processors was not investigated by this project.
It is believed that the current network architecture would severely restrict such a scale-up

due to network contention.

4.

—

w——

Distributed Issues Final Report
7. Design of Systems Using Distributed Ada
7.1 Hardware Considerations

There are several aspects of system design that impact the utility of the systcem. Experience
has shown that the implementation of distributed systems must be done with the expectation
that the hardware will provide reasonable support for fundamental services. These services

include:

1) The ability to transmit urgent information in a timely fashion. This requirement
usually implies that messages can be prioritized and that the priority is observed in any

situation where the potential delay exceeds the allowable allocated time.

2) The ability to broadcast, and later determine that all recipients obtained the

message.

3) Sufficient hardware buffering support so that incoming messages will not overrun,

resulting in the need for re-transmission.

4) Error detection (or correction) to provide indication of successful message transfer

immediately (i.e. within 10 us) by the hardware.
5) The ability to synchronize among the processors.

To a large extent, the network topology has an influence on the real-time response and
priority of services provided. The most common network topologies include: Rings,
N-dimensional Hypercubes, and Buses. This demonstration project utilized a standard bus
topology network - Ethernet, because of its availability and cost. As discussed in a prior

report {1], Ethernet is not ideal for real-time use since there is no provision for hardware

J

Distributed Issues Final Report

generated acknowledgements and because access to the bus is granted on a contention basis.
The contention-based access method is a poor choice for real-time because no provision is
explicitly provided for priority, and two nodes trying to access the medium simultaneously
result in a collision. When this occurs, they both wait a random period and retry later. The
effect of this on congested networks is a queuing order that is often first-in, last-out. This
results in very high worst-case response times which makes meeting fixed deadlines difficult.
However, in the demonstration project contention was low since bus utilization was kept
below 2%. A more appropriate network for real-time would be either a point-to-point

interconnect or a star topology that provided guaranteed response time to all network nodes.
7.2 Software Considerations

The ability to use distributed Ada depends on being able to separate program execution into
tasks that can execute in parallel. For embedded applications, usually a small set of
independent tasks are naturally present due to their interaction with external objects. These
objects (like a video display, operator keyboard, or rocket) are independent and operate
concurrently in the real-world. Their control or monitoring therefore naturally maps to
separate tasks. The order of execution for these tasks is often asynchronous and is dictated
by external events. This type of concurrency is referred to as "natural parallelism”. Parallel
execution can also be performed on any independent set of operations that are not ordered.
Typically these are done as sequential or iterative processes because treating each operation
as a separate task would result in additional context switches. However, applying multiple
processors to the computations can more than compensate for the small overhead of the
additional context switches. This forced parallelism can help to increase the amount of

processors which can be effectively used.

Distributed Issues Final Report

As a design goal, system designers shoulu attempt to reduce interdependency of tasks as
much as possible. Usually this requires detailed knowledge of the application and implies
being able to partition system functions into tasks that have a high degree of autonomy.
Tasks (other than monitors for shared access control) should not be used for activities that

cannot be done in parallel.

Secondly, avoid serialization in the order of task synchronization if possible. For example, if
task A must wait for both task B and task C to provide data, it should not enforce the order
of which task it must rendezvous with first unless they are always guaranteed to arrive in a
particular order. Instead, a conditional rendezvous should be used to prevent unnecessary

serialization of events.

Third, tasks which must reside on a particular processor because of required access to
hardware interfaces should provide the minimum service necessary to support efficient use
of that hardware. This approach provides additional design freedom to locate a greater
percentage of the required processing demands according to communication demands rather

than specific hardware dependencies.

Finally, the software should be designed to operate correctly during overload conditions.
This requires the ability to detect the overload condition, maintain consistency of data, and
(ideally) to support the dynamic load shedding necessary to make good use of the available
processing resources. This last provision is absolutely necessary to continue operation in the
presence of hardware failures, since the loss of processing resources will aimost certainly

increase the likelihood of overload conditions.

Distributed Issues Final Report
7.3 Differences Between Distributed and Uniprocessor Implementations

There were two major unexpected differences identified between execution on a distributed
system and a uniprocessor system. The first was mentioned in the performance section and
involves the impact of 1/O blocking on high priority tasks. This prevents starvation in low
priority tasks and allows the status display and target tracker tasks to continue to run even
under conditions of very high utilization. This effect was due to the desire to run tasks as
often as possible during non-overload conditions and yet allow the more critical tasks to
obtain the CPU during overload. This may have been avoidable using a more complex
algorithm to schedule the status and target tracker tasks based on the available time for

them to run.

The second difference was due to a design assumption that made the program erroneous.
During a prototype enhancement of the application, a change was made in the program to
use message sequence numbers in order to detect the loss of successive reports (due to
buffer overwriie during overload conditions). Although the code was made obsolete by
another function and was essentially removed prior to system integration, a seemingly
harmless portion remained which examined the rocket report message. This message was a
task entry "out” parameter from the simulator’s report buffer task and it was examined to
detect sequence numbers that changed from report to report. By convention, only the first
"N" items in the message are considered valid, where "N" is provided at the beginning of the
message. However the sequence monitoring code did not examine this count before testing
the sequence numbers and assumed that the first rocket position was always valid. In the
single-CPU configuration, the entry call "out" parameter was passed "by address”, and the
buffer task only updated those records that were active. In distributed configurations, entry

call parameter passing must be done as "copy-in, copy-out” so the data can travel over a

Distributed Issues Final Report

network and it operates without regard to the contents of the objects being copied. The
result is that all of the records are updated during each entry call. This had the effect that
the sequence software became confused and rejected messages due to apparent bad
sequence numbers. The root of the problem was due to a dependence on the parameter

passing mechanism used for entry parameters. RM 9.5(6) states that:

"The parameter modes for parameters of the formal part of an entry declaration are the
same as for a subprogram declaration and have the same meaning (see 6.2)."

RM 6.2(5) defines out mode parameters as:

The formal parameter is a variable and permits updating of the value of the associated
actual parameter.

The value of a scalar parameter that is not updated by the call is undefined upon return;
the same holds for the value of a scalar subcomponent, other than a discriminant.
Reading the bounds and discriminants of the formal parameter and of its subcomponents
is allowed, but no other reading.

RM 6.2(7) continues:

"For a parameter whose type is an array, record, or task type, an implementation may
likewise achieve the above effects by copy, as for scalar types. In addition, if copy is used
for a parameter of mode out , then copy-in is required at least for the bounds and
discriminants of the actual parameter and of its subcomponents, and also for each
subcomponent whose type is an access type. Alternatively, an implementation may
achieve these effects by reference, that is, by arranging that every use of the formal
parameter (to read or to update its value) bo reated as a use of the associated actual
parameter, throughout the execution of the subprogram call. The language does not
define which of these two mechanisms is to be adopted for parameter passing, nor
whether different calls to the same subprogram are to use the same mechanism. The
execution of a program is erroneous if its ef?ect depends on which mechanism is selected
by the implementation."

The essential difference in implementation approach is that when call by reference is used,
only those records that are explicitly assigned a value are altered by the entry call. When
call by copy-in/copy-out, all of the values are altered. In either case it is considered
erroneous to reference a value that is not updated, but in fact the single-CPU application
was doing this. There was no effect in the call by reference implementation, but when the

task became distributed and call by copy was used, the latent error in the software was

Distributed Issues Final Report

activated. The lesson is that erroneous programs are more likely to operate incorrectly on
distributed systems because a different parameter passing mechanism is likely to be used for

composite objects.

-3(-

y

Distributed Issues Final Report
8. Limitations of the Distribution Support
8.1 Task Identification

The current mechanism for identifying tasks is the task’s base priority. This was a
convenient mechanism to use for a number of reasons. First, it is stored in the vendor’s
runtime task control block and is therefore available during any runtime call. It can be set
via a pragma in the source code and therefore a unique ID can be associated with each task
type. This approach was selected because it provided an expedient solution to identifying
application tasks to the distributed runtime without modification to either the compiler or

the vendor runtime.

Future versions would obviously use some other field in the control block because this
technique is very limited. One complication is with the handling of task arrays. Since they
are of the same task type, all tasks in an array have the same priority. This problem was
circumvented by leaving sufficient space between adjacent priorities to change the priority of

each task in the array during activation if necessary to make them unique.

Another approach was considered, but rejected because of development time. This
approach was to use an intermediate file produced for a debugger to correlate the actual
name of each task with the execution addresses where the task type is created and the task
object is activated. This information would be combined with the designer’s distributed
configuration specification and loaded with the runtime. Since this specification would use
the actual expanded name of each task, the limitation of having only as many tasks as there
are priorities would be removed. During task type creation and task activation, the return
address on the stack during the runtime call provides the execution address and could be

used to identify the task type and object in the configuration specification. This approach

Distributed Issues Final Report

reauires the development of a tool to process the compiler intermediate files, linker maps,
and the distributed specification file. There may be other problems that are not obvious but

the method appears suitable for some applications.
8.2 Code Replication

Currently all of the code for each task must be resident on each processor. In some
applications this is unacceptable since there will not be sufficient memory to support the
entire application on every processor. One approach to reducing this overhead may be to
use subunits for all task bodies and then create a sublibrary with dummy bodies appropriate
for each processor configuration. Linking the program with respect to each sublibrary will
then produce a load image for that processor configuration. However, some compilation
systems do not allow subunits to appear in any library other than the library in which the
parent unit was compiled. In any case, it would probably be advisable to have a tool which
automatically created the necessary sublibaries and subunit bodies and therefore reduce the

chance of error in generating the individual load images.
8.3 Network Error Recovery

Each network message is acknowledged which allows transmission errors to be detected.
however there is no provision for re-transmission. The system will simply shutdown and
reconfigure on the first error. This is somewhat severe since re-transmission can usually be
done without loosing real-time if the acknowledgements are prompt. (Measurements on the
BDS indicated typical acknowledgement times of 400 to 800 microseconds.) The only
complication is saving the data for re-transmission. Currently, transmissions transfer
application variables directly to a single hardware transmit buffer. Once the message is sent,

the buffer is reused and the application task is allowed to continue. There is no provision to

Distributed Issues Final Report

save the data for later re-transmission. This could be done with very little overhead by
allocating additional space in the hardware buffer for transmissions, however the hardware
in use is configured with only 8KB (kilobytes) of memory and therefore this is not practical.
By expanding the memory to 32KB, or by using system memory and performing an
additional copy, the data can be retained until the acknowledgment is received and the

buffer can be freed.

-33.

Distributed Issues Final Report
9. Compiler and Runtime Problems

Considerable effort was spent isolating problems associated with the Ada implementation.
The implementation was an upgrade from the version used on the previous demonstration
project and was far more reliable than that eurlier version. Nevertheless because code
generator errors continued to appear, a decision was made to not use optimization for
compilation of many of the units and to greatly restrict use of pragma inline. This noticeably

improved the reliability of the generated code.

Even with these restrictions, two problems were identified during final integration testing.
In one unit where inline was still used, the compiler failed to generate the same (correct)
addresses for variables which were initialized during package elaboration. These variables
happened to be pointers within a circular queue, and the error would generally go ziinoticed
if the values of the memory locations happened to be the same. This was typically the case
during testing since the system memory initialization routine would zero all of memoryv to
prevent parity errors. However, depending on the contents of memory when the program
was loaded the system could crash if the two values were very large or not equal to each
other. While single stepping through the program it was noticed that the pointers were
being initialized properly which was the obvious expected source of the problem. However,
during program execution the system would still crash, and the pointers would have invalid
'ata. Use of the processor’s special debug registers to halt on references to data, much like
an in-circuit emulator, helped to track down the problem and realize that two different

locations were being used for the same variable.

The second problem was related to computation of 32-bit fixed point values. When a small
value is divided by a large value resulting in zero, and exactly one of the operands is

negative, the runtime would incorrectly assume that an overflow had occurred because the

Distributed Issues Final Report

result was not negative. Instead it was zero, which was also a legal value. This problem was
fairly quickly resolved since it has been noticed in the earlier release of the runtime. It was

fixed by changing the conditional branch instruction to allow for zero results.

Distributed Issues Final Report
10. Summary

This project demonstrated that the use of distributed Ada can provide increased
performance benefits and fault tolerance for a reasonably complex real-time application.
These benefits can take the form of simply using the parallelism natural in the application or
by expanding the parallelism using task arrays to compute multiple independent
calculations. In particular, the ability to distribute elements of a single Ada object was
demonstrated by distributing an array of tasks to divide up the workload among several

processors.

Task precedence relationships create considerable design difficulties when trying to analyze
a system for optimal parallel operation. New tools and scheduling paradigms are required
to assist designers in resolving these difficulties. However, techniques do exist to provide
marginal improvements in parallel operation by reducing dependencies and encouraging the
judicious use of synchronization primitives. An exaraple of such a technique is the use of
buffering schemes and control variables to de-couple ta.xs. This technique may require

detailed knowledge of the application to insure proper execution with the buffering scheme.

The concept of "scalable performance" was discussed, and a more appropriate term for
real-time embedded systems: "leveraged performance" was introduced. This concept
recognizes the limiting factors in real-time systems, and emphasizes the potential of capacity
increase factors greater than one (1) for applications with a substantial portion of processing

dedicated to execution recuirements of fixed duration.

A very important potential gain of distributed systems is the ability to utilize the natural
redundancy in the hardware to achieve increased fault tolerance. Typical embedded systems

have had, and will continue to have multiple processors. The problem of reconfiguring the

Distributed Issues Final Report

system during failure conditions has prevented widespread use of fault tolerance techniques.
Distributed Ada appears to be a good candidate for reducing this problem to a manageable

level for applications which should operate in the presence of failures.

Fault tolerance concerns were examined and a clear need arose to provide an interface
between the fault tolerant runtime and the application. The application must be able to

have some sense of the available processing resources in order to adapt to the configuration.

An example was shown of an erroneous program which failed on the distributed
implementation when it had previously run correctly in a uniprocessor configuration. A
conclusion was drawn that since distributed systems are likely to use both "pass by copy" and
"pass by reference” mechanisms for parameters of composite types, programs which
erroneously depend on the parameter passing mechanism are more likely to fail on

distributed systems.

Finally, compiler reliability still poses a serious probler. when trying to obtain the highest
performance possible using complex op:imizations and language features such as pragma
inline. Mission and safety critical applications should consider the impact of having to

operate without the use of these performance enhancements.

-37.

Distributed Issues Final Report
11. References

[1]) CECOM Center for Software Engineering, "Real-Time Ada Demonstration Project”,

CIN # C02 092LA 000900, Final Report, delivered by LabTek Corp., May 31, 1989,

[2] Reference Manual for the Ada Programming Language, ANSI/MIL Standard 1815A-1983.

I

Distributed Issues Final Report

12 Appendix A - Border Defense System Ada Source Code

The source code for the BDS system follows in alphabetical order of the unit names

(specifications precede bodies).

Distributed Issues Final Report

--% UNIT: Aim_Data package spec. -
--% Effects: Holds Rocket/Target history information for Guide. --
--% Modifies: Rocket_Info is global data and is modified by Guide. --
--% Requires: Initialization is required and performed by Guide. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: L. Griest. -

PACKAGE SPEC : Aim_Data

I

!

I

| Aim_Data contains the information for Guide necessary to control the

| rockets in flight. The data is initialized by Guide when the rocket

| is taking off from a launch position. Note that curr_nnnn signifies the

| most current postion of an object and that last_nnnn signifies the position
--| the object had immediately prior to this interval (assuming no overioad

| condition). The prev_nnnn field exists only for rockets and represents

| the position the rocket had two intervals prior to this one. This field

| is used to calculate the velocity of the rocket last interval in all three

| axis. This information is not needed for targets.

| RATE_REC_TYPE is necessary to provide the accuracy necessary when

| calculating accelerations and velocities, particularly at launch times.

!

-- Modifications Log

-- 89-11-09 : LJG => Original created.

with Types; use Types;
package Aim_Data is

type RATE_REC_TYPE is record
X : Types.RATE_TYPE;
Y : Types.RATE_TYPE;
Z : Types.RATE_TYPE;

end record;

type ROCKET_INFO_TYPE is record

LAST_TARG : Types.POSITION_TYPE;
CURR_TARG : Types.POSITION_TYPE;
PREV_ROCK : Types.POSITION_TYPE;
LAST_ROCK : Types.POSITION_TYPE;
CURR_ROCK : Types.POSITION_TYPE;
OLD_AIMPQINT : Types.AIMPOINT_TYPE;
BOOST_PHASE : BOOLEAN; -- rocket currently in boost phase?

end record;

-40-

Distributed Issues Final Report

type ROCKET_INFO_ARRAY is array(Types.ROCKET_INDEX_TYPE) of ROCKET_INFO_TYPE;

ROCKET_INFO : ROCKET_INFO_ARRAY;
end Aim_Data;

41-

--% UNIT:

--% Effects:
--% Modifies:
--% Reguires:
--% Raises:
--% Engineer:

Distributed Issues Final Report

Aimpoint function spec. --
Compute new aimpoint based on acceleration requirements. --
No global data is modified. --
No initialization is required. --
No explicitly raised exceptions are propagated. --
T. Griest. --

--| FUNCTION SPEC : Aimpoint

- Aimpoint is responsible for returning a new elevation and azimuth to

--| the caller based on the acceleration adjustment.

-- Modifications Log

-- B9-11-6 : TEG => Original Created.

with Types; use Types; -- for operators on types only!
with Aim_Data; use Aim Data;

function Aimpoint(OLD_AIMPOINT : Types.AIMPOINT_TYPE;

ACCEL_ADJUST : Aim_Data.RATE_REC_TYPE)
return Types.AIMPOINT_TYPE;

-42-

Distributed Issues Final Report

--% UNIT: Aimpoint function body. -
--% Effects: Compute new aimpoint based on acceleration requirements. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. i

FUNCTION BODY : Aimpoint

The selected aimpoint is a function of the desired change in acceleration
for each of three axis and the current aimpoint. The following rules are
used:
TO INCREASE Z ACCELERATION adjust elevation towards 16384 (straight up)
TO INCREASE X ACCELERATION adjust azimuth towards 0 (straight right)

-l
-l
-l
-
-
-
|
-l
-
--| Obviously there is some interaction among these components. Z

--} is the controlling axis since its acceleration is not dependent on azimuth
--| and the accelerations in X and Y are dependent on elevation. Once the

--| change in elevation has been established, the impact on X and Y
--| accelerations are computed, then a proper azimuth is selected based
--| on the above rules.
--| To implement the friendly fire suppressor only generate and process
--| elevations between -16384 (straight down) and 16384 (straight up).
--| and azimuths between 0 (straight right) and 32767 (straight
--| left).
--| when adjusting elevation, reduce negative impact since gravity will
--| have a compensating effect.
-l

-- Modifications Log

-- 89-11-03 : TEG => Original Created.

function Aimpoint(OLD_AIMPOINT : Types.AIMPOINT_TYPE;
ACCEL_ADJUST : Aim_Data.RATE_REC_TYPE)
return Types.AIMPOINT_TYPE is

max_climb : constant := 16384;
max_descend : constant := -16384;

left : constant := 32767; -- full left while going forward
right : constant := 0; -- full right while going forward
elev_factor : constant := 10000; -- controls fiexibility in turning rocket
az_factor : constant := 10000; -- controls flexibility in turning rocket

NEW_AIMPOINT: Types.AIMPOINT_TYPE;
ADJUST_ELEV : Types.EXTENDED_BAM; -- use 32-bit values for intermediate

-43-

Distributed Issues Final Report

ADJUST_AZ : Types.EXTENDED_BAM;
TEMP : Types.EXTENDED_BAM;

begin
-- Put("In Aimpoint: ADJUST_ELEVATION: ");

-- Change elevation to effect 2 acceleration first.
ADJUST_ELEV := Types.EXTENDED_BAM(ACCEL_ADJUST.Z * elev_factor);
if ACCEL_ADJUST.Z < 0.0 then
ADJUST_ELEV := ADJUST_ELEV / 2; -- reduce descend angle because of gravity
end if;
TEMP := Types.EXTENDED_BAM(OLD_AIMPOINT.ELEVATION) + ADJUST_ELEV;

-- Must perform limit check on climb/descend.
if TEMP > max_climb then
NEW_AIMPOINT .ELEVATION := max_climb;
elsif TEMP < max_descend then
NEW_AIMPOINT.ELEVATION := max_descend;
else
NEW_AIMPOINT.ELEVATION := Types.BAM(TEMP);
end if;

-- NOW PROCESS AZIMUTY (Using only X, let Y take care of itselff)
ADJUST_AZ := Types.EXTENDED_BAM(-ACCEL_ADJUST.X * az_factor);
-- Do limit checks to make sure we don’t start turning back towards FLOT

TEMP := Types.EXTENDED_BAM(OLD_AIMPOINT.AZIMUTH) + ADJUST_AZ;
if TEMP > left then
NEW_AIMPOINT.AZIMUTH := left;
elsif TEMP < right then
NEW_AIMPOINT.AZIMUTH := right;
else
NEW_AIMPOINT.AZIMUTH := Types.BAM(TEMP);
end if;
return NEW_AIMPOINT;
end AIMPOINT;

-44-

Distributed Issues Final Report

--% UNIT: BDS Spec & Body. i
--% Effects: Initiates main processing, loops recording idle time. --
--% Modifies: No global data is modified. --
--% Requires: Status.Initialize be called before Mouse.lnitialize. --
--X Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest .-

------------------ Distribution and Copyright --------c--c-----
-- Derivation : LabTek Border Defense System v2.0

-- This Border Defense System Software inherits the LabTek copyright.
-- The following copyright must be included in all software utilizing
-- this application program.

-- Copyright (C) 1989, 1990 by Labiek Corporation, Woodbridge, CT, USA

-- Permission to use, copy, modify, and distribute this

-- software and its documentation for any purpose and without
-- fee is hereby granted, provided that the above copyright
-- notice appear in all copies and that both that copyright
-- notice and this permission notice appear in supporting

-- documentation, and that the name of LabTek not be used in
-- advertising or publicity pertaining to distribution of the
-- software without specific, written prior permission.

-- LabTek makes no representations about the suitability of
-- this software for any purpose. It is provided "as is"

-- without express or implied warranty.

-- This software and its documentation are provided "AS [S" and
-- without any expressed or implied warranties whatsoever.

-- No warranties as to performance, merchantability, or fitness
-- for a particuilar purpose exist.

-- In no event shall any person or organization of peopte be
-- held responsible for any direct, indirect, consequential
-- or inconsequential damages or lost profits.

TASK BODY : BDS main procedure

[

I

I

| The BOS main procedure is used to synchronize the start of events within
-+| the entire system. During elaboration until the start of the procedure,

| the system will settle to a known state. Then when the call to Status

| is performed, the statistics titles will be printed on the screen. After

| this is performed the Mouse initialization is completed. Then two

-45-

Distributed Issues Final Report

| successive entry calls are done. The first starts the Rocket.Control task
| going. The second signals the Track task to begin processing target
| information.
] The "--STP(NNNN) ..." signifies a Time Point stamp location. There is a
| tool built by LabTek which transforms these comments to Ada code which

--| performs a call to a TimeStamp procedure. In order to keep from filling
| memory too fast, a loop is used to force the main procedure to loop slower
| than it normally would. This time stamp routine will enable approximations
| of the amount of free time the processor has, since this procedure has the
| lowest priority.
I

-- Modifications Log

-- 88-09-30 : TEG => Original created.

with Config; -- global configuration parameters

with Status; -- updates statistics used

With Types; -- global types definitions

with Mouse; -- mouse movement and rocket launching

with Rocket; -- rocket attitude and aimpoint calculations
with Target; -- generation of various targets

with Interrupt_Control; -- enabling and disabling of (all) interrupts
with Machine_Dependent; -- individual pixel plotting for EGA

with Time_Stamp; -- run time profiler

with Distrib;

procedure BDS is

-- This is the main program for the Border Defense System. It has only

-- two calls which are of any importance, i.e., the other code is for

-- timing purposes only. The first call performs initialization of the screen
-- statistics descriptions and their initial values. The second cal! starts
-- the mouse.

use Types; -- for visibility to "+"

pragma PRIORITY(Config.bds_priority);

COUNT : Types.WORD; -- these two variables are for
SLOW : Types.WORD; -- slowing the time stamps
begin
if Distrib.MASTER then
Status.Initialize; -- print screen statistics
Mouse.Initialize; -- must be done after status signal
Rocket.Control.Start;
Target.Track.Start;
end if;
loop -- done with initialization
-46-

Distributed Issues Final Report

Time_Stamp.Log(0001); --$TP(0001) BDS main time stamp
SLOW := 1;
for COUNT in 1,.,2000 loop
SLOW := SLOW + 1;
end loop;
end loop;
end BDS;

Distributed Issues Final Report

--% UNIT: Config Spec. .-
--% Effects: Provides system-wide configuration constants. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: 7. Griest. -

PACKAGE SPEC : Config

The Config package (which currently has no body associated with it) can
be contrasted to the Types package. While the Types package is responsible
for declaring the various global types used throughout the BDS, the Config
package is used to declare global constants. The rocket launch trajectory
is used to determine the azimuth and elevation of the rocket before takeoff.
The kill radius is used to determine the explosive power of the rocket as
it hits near a target. If the target is within the radius determined below,
then it is considered to have been close enough to the rockets explosion to
have caused damage severe enough to render it immobile and harmless. Note
that the BDS does not take into account the case of a rocket doing *some"
damage on the target; every target is considered to be totally missed or
fully hit. There are two battle areas that can be considered in the BDS.
The first is the battlefield area which is the "real" area of conflict and
the other is the screen battlefield which is shown to the user. The real®
battlefield is used by the Target Tracker, the Rocket Controller, and their
respective data links to their sensors. In order to provide a proportionat
view of the "real" battlefield area, the number of pixels in X and Y was
calculated. The screen battlefield does not take up the entire screen;
some is left for the display of statistics. The calculations done in the
"real" battlefield are three dimensional, those on the battlefield screen
two dimensionat.

The bytes per storage unit is used for transportability reasons. A count
of bytes required for each tasks’ stack (including nested procedures) was
included so that the application could be less implementation dependant.

To leave defaults in place would require that the largest stack frame
be used for all tasks stacks regardless of the actual space needed. By
specifying the amount of stack needed on a per task basis, less memory
is used.

The interval constant declared below is the basic unit on which timing
in the BDS is performed. It specifies that an entire iteration (which
includes a rocket update, a target update, and a possible mouse or
statistics update) all be performed in 100 millisecs. The delays specified
in the timed tasks (Target.Track, Rocket.Control, Simulate.RDL.Rock_Sup and
Simulate.Sensor.Targ _Sup are the timed tasks currently) are calculated
so that they will wakeup once every interval (100 ms). The rest of the
system derives its timing from these drivers.

The priorities are grouped together here because priorities specified
individually in each task declaration does not help anyone looking to

--| determine priorities which are relative to each other. The Mouse Buffer

-48-

”

Distributed Issues Final Report

| task is not the highest priority task. Since there is a mouse associated

| with the system, which uses an interrupt entry call and is treated as a

| task, it uses the hardware interrupts to determine its priority. Since

| a task must always be sitting at the accept to receive the interr pt tasks’

| entry call, the Mouse Buffer task (which is responsible for transiating

| the X-Y motion of the mouse (and any buttons pushed) into motion of the

| reticte) is defined at the highest software priority level. For the same

| reason, as well as to be able to keep the screen in real time, the Graphics

| task is declared with the next available priority. In order to increase
--| throughput from the simulator to the BDS the buffers which route rocket

| and target data are declared with the next highest available priority.

| Because the simulator contains the two tasks which are scheduled according

| to a deadline (RockSup and TargSup) these tasks are next in the priority

| line. Then the rocket controller for the BDS and the target controller

| for the BDS are (respectively) assigned their priorities. Below these

| tasks is the statistics task priority. It is allowed to be low because

| of the liberal timing requirements placed on it by the requirements

| documentation. Obviously, since the main program performs no function

| which is of use to the BDS, it is assigned the lowest priority.

l

-- Modifications Log

-- B8-10-11 : TEG => Original created.
-- 89-11-16 : MPS => Added launch attitudes and locations,

with System; use System;
package Config is

-- The following two constants allow the space needed for the various tasks to
-- be declared in bytes.

byte : constant := 8; -- 8 bits
bytes_per_storage_unit : constant := byte / System.STORAGE_UNIT;

-- Now define battlefield area perimeters

meters_in_battle_area : constant := 4_000.0; -- in X and Y direction
meters_per_X_pixel : constant := 9.625; -- rounded up to nearest
meters_per_Y_pixel : constant := 11.875; -- Types.METER.

max_pixels_in_battle_area : constant := meters_in_battlie_area
/ meters_per_X_pixel;

-- Task priorities in order of decreasing urgency.

-- NOTE: MOUSE IN_CHAR has no priority because it runs

-- completely at the hardware interrupt level.

-- The idea implemented here is that all the Simulator information is
-- of higher priority than the actual Border Defense System code.

-49-

save_priority
display_priority
track_data_priority
report_buf_priority
guide_buf_priority
rock_sup_priority
targ_sup_priority
control_priority
guidance_priority
track_priority
update_priority
bds_priority

-- define entire hi-res screen display borders.
-- two main sections.

-- current statistics will be displayed.
-- in any statistics displayed is statistics_length.

Distributed Issues Final Report

constant PRIORITY :=

: constant PRIORITY :=

constant PRIORITY :=
constant PRIORITY :=

: constant PRIORITY :=

constant PRIORITY :=
constant PRIORITY :=

: constant PRIORITY :=

constant PRIORITY :=
constant PRIORITY :=

: constant PRIORITY :=

constant PRIORITY :=

PRIORITY' last;
save_priority-1;
display_priority-1;

-- Mouse_Buffer
.- uidid.CS

-- Target

track_data_priority-1;-- Sim.ROL
report_buf_priority-1;-- Sim.RDL

guide_buf_priority-1;
rock_sup_priority-1;
targ_sup_priority-1;
control_priority-1;
guidance_priority-2;
track_priority-1;
update_priority-1;

-- Sim.ROL

-- Sim.Sensor
-- Rocket

-- Rocket

-- Target

-- Status

-- Main

The screen is divided into

There is the battlefield area where the targets, rockets,
-- and reticle are allowed to move, and there is the statistics area where our

-- the battlefield there is a border.

-- define entire screen constants

entire_screen_left
entire_screen_right
entire_screen_top
entire_screen_bottom

: constant :=

0

: constant := 639;
: constant := 0
3

: constant :=

-- define battlefield display borders and center.

battlefield_screen_left

: constant := 222;

battlefield_screen_right : constant := 638;

battlefield_screen_top

: constant := 1;

battlefield_screen bottom : constant := 338;

battlefield_center_x
battlefield_center_y

-- define border between battlefield

border_left
border_right
border_top
border_bottom

: constant := 430;
: constant := 169;

: constant := 221;
: constant := 639;
: constant := 0;

: constant := 339

~- define statistics display borders.

status_left
status_right
status_top
status_bottom

: constant := 0;
: constant := 220;
: constant := 0;
: constant := 349;

-- starting (left)

The maximum number of digits allowed
Between the statistics and

-- ending (in pixels)

-- starting (top)

-- ending (in pixels)

and statistics.

-- starting (left)

-- ending (in pixels)

-- starting (top)

-- ending (in pixels)

-- starting (left)

-- ending (in pixels)

-- starting (top)

-- ending (in pixels)

-50-

Distributed Issues Final Report

-- statistics_length is the number of digits allowed in any status field, and
-- stats_title_max_length is the max number of letters any particular
-- statistics title may contain.

statistics_length : constant := 4;

stats_title_max_length : constant := 11;

number_of_titles : constant := 12;

max_targets : constant := 50; -- total targets
max_rockets : constant := 20; ~-- total rockets

interval : constant := 0.100; -- basic interval is 100ms
gravity : constant := 9.80665; -- meters/sec**2

-- launch attitude

launch_azimuth : constant := 16384; -- straight ahead in BAMS
launch_elevation : constant := 15000; -- 7.6 degrees off straight up
Launch_x ¢ constant := 2000.0;

launch_y : constant := 60.0;

launch_z : constant := 10.0;

kill_radius : constant := 10.0; -- 10 meters x 10 meters

end Config;

N

Distributed Issues Final Report

--% UNIT: Control task subunit. --
--% Effects: Provides overall control for rocket flight and display. --
--% Modifies: Updates rocket data base in Rocket body. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. --

i

TASK BODY : Rocket.Control

|
I
I
| The Rocket.Control task controls the information coming in from the rocket
| support task and the target support task. With this information it
| develops a list for the guidance task to work on (the guidance task being
| in charge of developing new aimpoints for each rocket), updates the
| statistics, launches a new rocket if necessary, sends the new positions of
| the rockets to graphics for displaying, receives from guidance the new
| aimpoints, and delivers those to the Rocket Support task in the simulator.
| The purpose of the disengaged pointers, the engage flag, and the rocket
| launch flag is to support the specification that only one target can be
| marked destroyed each interval and that only one rocket can be launched
| per interval. Also going along with this is that targets can only be
| created one per interval. This helps to maintain a better average
--| response time, thus predictibility of the amount of time this routine will
| take is enhanced. If a graph was drawn of CPU utilization versus time, and
| the targets and rockets were all allowed to be created and destroyed in
| one interval as necessary, then several destroyed rockets and consequently
| several created targets (the next interval) would appear on the graph as
| spikes. It is necessary to eliminate "spikes" from the BDS because it is
| a deadline driven mission. For this reason, the Simulate.RDL.Rock_Sup task
| and the Simulate.Sensor.Targ_Sup task have timing loops surrounding their
| executable code. This technique allows for better fault tolerance; if one
| of the buffer tasks or even one of the four main tasks mentioned above were
| to be disabled because of an error, the rest of the system would still be
| abte to function properly.
| The rendezvous mechanism with the guidance task is done as if there were
| an array of guidance tasks. Although there is only one guidance task at
| present, if more were added and they were on separate processors, this
| design would facilitate the distribution of those tasks.
I

-- Modifications Log

-- 88-11-10 : TEG => Original Created.

-- 89-11-22 : MPS => History information moved from rocket package body
-- to rocket.control task body.

with Interrupt_Control;
with Grid_to_Pixel;

Distributed Issues Final Report

with Simulate;
with Target;
with Sync;
with Calendar;
with Engage;
with Time_Stamp;
pragma ELABORATE(Interrupt_Control, Grid_to_Pixel, Sync,
Simulate, Target, Calendar, Engage, Time_Stamp);

separate(Rocket)
task body Control_Type is

use Calendar; -- for operators

use Types; -- for operators

use Sync; -- for operators

package RDL renames Simutate.RDL; -- make simulator transparent
dis_list_size : constant := Config.max_rockets;

type HISTORY_REC_TYPE is record
ROCKET_OLD : Types.POSITION_TYPE;
TARGET_OLD : Types.POSITION_TYPE;
TARGET_AIMED_AT : Types.WORD_INDEX;
end record;

type HISTORY_LIST_TYPE is array(Types.ROCKET_INOEX_TYPE) of HISTORY_REC_TYPE;

POS_HISTORY : HISTORY_LIST_TYPE; -- .olds old rocket/target positions
MOVE_NUMBER : Types.WORD_INDEX; -- to update display
NEXT_ROCKET_MSG : ROCKET_MSG_TYPE; -- local copy of input msg
NEXT_TARGET_LIST : Target.TARGET_DATA_LIST_TYPE; -- local copy of input data
GUIDE_MSG : ROCKET_GUIDE_MSG_TYPE; -- local copy of output msg
AIMPOINT_LIST : AIMPOINT_LIST_TYPE(Types.ROCKET_INDEX_TYPE);

-- local copy
MOVE _ROCKETS : Graphics.MOVE_LIST_TYPE(Types.ROCKET _INDEX_TYPE);
MOVE _INDEX : Types.WORD_INDEX;
PIXEL_POINT : Shapes.PIXEL;
MSG_INDEX : Types.WORD_INDEX; -- used to index incoming report
OLD_SEQ_TAG : Sync.SEQ_TYPE; -~ to filter stale reports out
ANY_ACTIVE_ROCKETS : BOOLEAN; -- used to update OLD_SEQ_TAG
ACTIVE_ROCKETS_ID : Types.ROCKET_INDEX_TYPE; -- holds an active rockets ID
NEXT_ENGAGED : Target.TARGET_ID_TYPE;
NEXT_DISENGAGED : Target.TARGET_ID_TYPE; -- keep track of all disengagements

DISENGAGED _LIST : array(Types.ROCKET_INDEX_TYPE) of Target.TARGET_ID_TYPE;

-53-

Distributed Issues Final Report

DISENGAGED_ON_PTR : Types.WORD_INDEX;
DISENGAGED_OFF_PTR : Types.WORD_INDEX;
DISENCAGED _ACK_PTR : Types.WORD_INDEX;

AVAILABLE_ROCKET : Types.WORD_INDEX; -- possible rocket to launch
LAUNCH_PENDING : BOOLEAN := FALSE;

LAUNCH_TARGET : Target.TARGET_ID_TYPE;

LAUNCH_ROCKET : Types.ROCKET_INDEX_TYPE;

ROCKET_DESTROYED : BOOLEAN;
ROCKET_LAUNCHED : BOOLEAN;

begin
accept Start;
for I in AIMPOINT_INFO‘range Loop -- initialize track data
AIMPOINT_INFO(I).ACTIVE := FALSE;
DISENGAGED_LIST(I) := O;
end loop;
NEXT_ENGAGED := 0;

.
"

DISENGAGED_ON_PTR
DISENGAGED_OFF_PTR :
DISENGAGED_ACK_PTR :

-- initialize disengage circle queue

"
—_ - -
~e wmy =

OLD_SEQ_TAG := 0;

Loop -- Main processing loop
begin -- exception block
Time_Stamp.Log(0002); --$TP(0002) Control task start time
ROCKET_DESTROYED := FALSE;
ROCKET_LAUNCHED := FALSE;

ANY_ACTIVE_ROCKETS := FALSE;

-- Rendezvous with buffer task to get next rocket message from sensor
Time_Stamp.Log(0003); --$TP(0003) Control rendezvous with Report_Buf start
ROL .Report_Buf.Get_Report(NEXT_ROCKET_MSG);
Time_Stamp.Log(0004); --$TP(0004) Control rendezvous with Report_Buf end

-- If there are more on circular disengage queue, send another to tracker
if DISENGAGED_OFF_PTR /= DISENGAGED_ON_PTR and then
not NEXT_TARGET_LIST(DISENGAGED_LIST(DISENGAGED _OFF_PTR)).STATUS.ENGAGED
then
DISENGAGED_OFF_PTR := DISENGAGED_OFF_PTR rem dis_list_size + 1;
end if;
if DISENGAGED _OFF_PTR
NEXT_DISENGAGED := 0;
else
NEXT_DISENGAGED := DISENGAGED_LIST(DISENGAGED_OFF_PTR);

DISENGAGED_ON_PTR then

-54-

Distributed Issues Final Report

end if;

-- Rendezvous to Get target list from target tracker, and provide it
-- with information on which targets have been engaged and disengaged.

Time_Stamp.Log(0005); --$TP(0005) Control rendezvous with Track Dat start
Target.Track_Data.Get(NEXT TARGET_LIST, NEXT_ENGAGED, NEXT_DISENGAGED);
Time_Stamp.Log(0006); --$TP(0006) Control rendezvous with Track_Dat end

-- Check if Track task has recognized the engage request, if so then
-- it is safe to clear it, and possibly engage another.

if NEXT_ENGAGED /= 0 and then
NEXT_TARGET_LIST(NEXT_ENGAGED).STATUS.ENGAGED
then
NEXT_ENGAGED := O;
end if;

-- Check to see if last disengage request was acknowledged

if DISENGAGED_ACK_PTR /= DISENGAGED_OFF_PTR and then

not NEXT_TARGET_LIST(DISENGAGED _LIST(DISENGAGED_ACK_PTR)).STATUS.ENGAGED
then

DISENGAGED_ACK_PTR := DISENGAGED_ACK_PTR rem dis_list_size + 1;
end if;

-- determine which rockets have been expended, and delete them from screen
-- (previously active, but no longer in report list)

MOVE_INDEX := O;

MSG_INDEX := 1;

for ROCKET_ID in Types.ROCKET_INDEX_TYPE loop

if AIMPOINT_INFO(ROCKET_ID).ACTIVE then
if NEXT_ROCKET_MSG.ROCKET_LIST(MSG_INDEX).SYNC_TAG = OLD_SEQ_TAG then

ANY_ACTIVE_ROCKETS := TRUE; -- need an active rockets time tag
ACTIVE_ROCKETS_ID := ROCKET_ID;
exit; -- old rocket report

end if;

-- look at most recent rocket report message to make sure rocket is still alive

if MSG_INDEX <= NEXT_ROCKET_MSG.NUM_ROCKETS and then
ROCKET_ID = NEXT_ROCKET_MSG.ROCKET LIST(MSG_INDEX).ROCKET_ID
then
POS_HISTORY(ROCKET_ID).ROCKET_OLD :=
AIMPOINT _INFO(ROCKET_1D).ROCKET_POS;
AIMPOINT_INFO(ROCKET_ID).ROCKET POS :=

Distributed Issues Final Report

NEXT_ROCKET_MSG.ROCKET_LIST(MSG_INDEX).POSITION;
POS_HISTORY(ROCKET_ID).TARGEY_OLD :=
AIMPOINT_INFO(ROCKET_ID).TARGET_POS;
AIMPOINT_INFO(ROCKET_ID).TARGET_POS :=
NEXT_TARGET_LIST(POS_HISTORY(ROCKET_ID).TARGET_AIMED_AT).POSITION_NEW;
MOVE_INDEX := MOVE_INDEX + 1;
MOVE_ROCKETS(MOVE_INDEX) :=
(XY_OLD => Grid_to_Pixel(POS_HISTORY(ROCKET_ID).ROCKET_OLD),
XY_NEW => Grid_to_Fixel(AIMPOINT_INFOCROCKET_ID).ROCKET_POS),
OBJECT => Shapes.ROCKET,
COLOR => Graphics.ROCKET_COLOR);
MSG_INDEX := MSG_INDEX + 1;
else

-- the rocket has deceased, put it in the list for erasure.

PIXEL_POINT := Grid_to_Pixel(-- get last point in pixel value
AIMPOINT_INFO(ROCKET_ID).ROCKET_POS);
AIMPOINT_INFO(ROCKET_ID).ACTIVE := FALSE; -- mark as inactive
MOVE_INDEX := MOVE_INDEX + 1;
MOVE_ROCKETS(MOVE_INDEX) :=
(PIXEL_POINT,
PIXEL_POINT,
Shapes .ROCKET,
Graphics.background_color);
AVAILABLE_ROCKET := ROCKET_ID; -- save if decide to launch
DISENGAGED_LIST(DISENGAGED_ON_PTR):=
POS_HISTORY(ROCKET_ID).TARGET_AIMED_AT;
DISENGAGED_ON_PTR := DISENGAGED_ON_PTR rem dis_list_size + 1;
Interrupt_Control.Disable;
Status.STATUS_CONTROL(Status.AIRBORNE).DATA :=
Status.STATUS_CONTROL(Status.AIRBORNE).DATA - 1;
Status.STATUS_CONTROL(Status.EXPENDED).DATA :=
Status.STATUS_CONTROL(Status.EXPENDED).DATA + 1;
Interrupt_Control.Enable;
ROCKET_DESTROYED := TRUE;
end if; -- found
else

-- rocket slot previously inactive, see if rocket has launched

if MSG_INDEX <= NEXT_ROCKET_MSG.NUM_ROCKETS and then
NEXT_ROCKET_MSG.ROCKET_LIST(MSG_INDEX).ROCKET_ID =
ROCKET_ID
then

-~ ROCKET HAS BEEN LAUNCHED, UPDATE DATA BASES
AIMPOINT _INFO(ROCKET_ID) :=

¢ TRUE, -~ ACTIVE
NEXT_ROCKET _MSG.ROCKET_LIST(MSG_INDEX).POSITION, -- NEW

Distributed Issues Final Report

NEXT_TARGET_LIST(LAUNCH_TARGET).POSITION_NEW); -- NEW
POS_HISTORY(ROCKET_ID) :=
(NEXT_ROCKET_MSG.ROCKET_LIST(MSG_INDEX).POSITION, -- OLD

NEXT_TARGET_LIST(LAUNCH_TARGET).POSITION_NEW, -~ OLD
LAUNCH_TARGET); -- TARGET AIMED AT
LAUNCH_PENDING := FALSE; -- all accounted for

MSG_INDEX := MSG_INDEX + 1;

Interrupt_Control.Disable;

Status.STATUS_CONTROL(Status.AIRBORNE).DATA :=
Status.STATUS_CONTROL(Status.AIRBORNE).DATA + 1;

Interrupt_Control.Enable;

ROCKET_LAUNCHED := TRUE;

else
AVAILABLE_ROCKET := ROCKET_ID;
end if; -- new rocket test
end if; -- active test
end loop; -- rocket-id loop (scan of all rockets)

-- Update Time tag for next message.
if ANY_ACTIVE_ROCKETS then
OLD_SEQ_TAG := NEXT_ROCKET_MSG.ROCKET_LIST(ACTIVE_ROCKETS_ID).SYNC_TAG;
end if; -- if no active rockets, don’t change OLD_SEQ_TAG.

-- Get guidance task(s) working on finding new aimpoint for guidance msg
for I in Types.WORD_INDEX range 1..Distrib.num_guide_tasks loop
Time_Stamp.Log(0007); --$TP(0007) Control rendezvous with Guidance(1) start
Rocket_Guide(l).History(
AIMPOINT_INFO(Distrib.guide_low(l)..Distrib.guide_high(1)));
Time_Stamp.lLog(0008); --$TP(0008) Control rendezvous with Guidance(1) end
end loop;

-- update status information

Interrupt_Control.Disable;

if ROCKET_LAUNCHED then
Status.STATUS_CONTROL(Status.AIRBORNE).DISPLAYED := FALSE;

end if;

if ROCKET_LAUNCHED or ROCKET_DESTROYED then
Status.STATUS_CONTROL(Status.AIRBORNE).DISPLAYED := FALSE;
Status.STATUS_CONTROL(Status.EXPENDED).DISPLAYED := FALSE;
Status.REQ_COUNT := Status.REQ_COUNT + 1;
if Status.REQ_COUNT = 1 then

Time_Stamp.Log(0009): --$TP(0009) Control rendezvous with Status start
Status.Update.Signal;
Time_Stamp.Log(0010); --$TP(0010) Control rendezvous with Status end
end if;
end if;

Interrupt_Control.Enable;

Distributed Issues Final Report

MSG_INDEX := 0; -- zero index for creating guidance message

-- Now, check if we should try to create a new ROCKET. Note that

-- if a rocket has just been destroyed, don‘t try to fire a new one

-- before the rocket tracker knows that it has been disengaged. Otherwise
-- it is likely to choose a target other than one that is closest.

if not LAUNCH_PENDING and

DISENGAGED_ACK_PTR DISENGAGED_ON_PTR and -- all have been ack’ed
NEXT_ENGAGED = 0 -- engage has been ack’ed
then

NEXT_ENGAGED := Engage(NEXT_TARGET_LIST);
if NEXT_ENGAGED > O then
LAUNCH_ROCKET := AVAILABLE_ROCKET;
LAUNCH_TARGET := NEXT_ENGAGED;
LAUNCH_PENDING := TRUE;
ond if; -- ready to launch
ena if; -- not pending check

-- get graphics task working on displaying rockets

Time_Stamp.Log(0011); --$TP(0011) Control rendezvous with Graphics start
Graphics.Display.Move(Graphics.LOW, MOVE_ROCKETS(1..MOVE_INDEX));
Time_Stamp.Log(0012); --$TP(0012) Control rendezvous with Graphics end

-- now get results of guidance information
for I in Types.WORD_INDEX range 1..Distrib.num yuide_tasks loop
Time_Stamp.Log(0013); --$TP(0013) Control rendezvous with Guidance(2) start
Rocket Guide(1l).Next_Guidance(
AIMPOINT_LIST(Distrib.guide_low(l)..Distrib.guide_high(1)));
Time_Stamp.Log(0014); --$TP(0014) Control rendezvous with Guidance(2) end
end loop;

-- Now generate new guidance message and send to Guide_Buf

for ROCKET_ID in AIMPOINT_INFO/range loop
if AIMPOINT_INFO(ROCKET_ID).ACTIVE then
MSG_INDEX := MSG_INDEX + 1;
GUIDE_MSG.ROCKET_GUIDE_LIST(MSG_INDEX) :=
(ROCKET_ID ,AIMPOINT_LIST(ROCKET_ID));
etsif LAUNCH_PENDING and then
ROCKET_ID = LAUNCH_ROCKET then
MSG_INDEX := MSG_INDEX + 1;
-- initiate launch
GUIDE_MSG.ROCKET_GUIDE_LIST(MSG_INDEX) := (ROCKET_ID,
(Config.launch_azimuth,
Config.launch_elevation));

-58-

Distributed Issues Final Report

end if;
end loop;
GUIDE_MSG.NUM_ROCKETS := MSG_INDEX;
Time_Stamp.Log(0015); --$TP(0015) Control rendezvous with Guide_Buf start
RDL.Guide_Buf.Put_Guide(GUIDE_MSG); -- send new guidance message
Time_Stamp.Log(0016); --$TP(0016) Controt rendezvous with Guide_Buf end
exception

when others =>
Debug_10.Put_Line("Exception in Control task");

end; -- exception block
end loop; -- main processing loop
end Control_Type; -- Rocket.Control task body

-59-

--% UNIT:
--% Effects:
--% Modifies
--% Requires
--% Raises:
--% Engineer

Distributed Issues Final Report

Debug_I10 Spec. .-
Provides non-intrusive trace output to secondary port. --
: No global data is modified. --
: No initialization is required. --
No explicitly raised exceptions are propagated. --
: T. Griest. .-

PACKAGE SPEC : Debug_lI0

]

N EE =N ==

This package is used to provide visibility to the character (and string)

written directly to, all text input and output is done via a serial port.
These routines are needed to signal to the user (via the serial port) that

I
I
I
I
--| input and output procedures. Currently, because the screen memory is
I
I
| an exception has occurred.
I

-- Modifications Log

-- 88-09-01

: TEG => Original created.

package Debug_I0 is

procedure
procedure
procedure
procedure
procedure
procedure
procedure

PUt(CHAR : CHARACTER);

Get(CHAR : out CHARACTER);

PUt(STR : STRING);

Get(STR : out STRING);

Put_Line(STR : STRING);

Get_Line(STR : out STRING; LENGTH : out INTEGER);
Skip_Line;

end Debug_10;

-60-

Distributed Issues Final Report

--% UNIT: Debug_10 body. --
--% Effects: Provides non-intrusive trace output to secondary port. --
--% Modifies: No global data is modified. --
--%X Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. -

PACKAGE BODY : Debug_IO

I

|

I

| The Debug_lIO package is used to provide a means of communication from
--| the BDS to the user. Since the terminal (the EGA screen in this case) is

| being written to directly, output cannot take place there, and therefore

| Text_IO cannot be used. See the hardware configuration file for more

| details on the input and output modes.

f

-- Modifications Log

-- 88-09-01 : TEG => Original created.

with Terminal_Driver;
pragma ELABORATE(Terminal Driver);

package body Debug_lO is
pragma SUPPRESS(storage_check);

procedure Put(CHAR : CHARACTER) is

begin
Terminal_Driver.Put_Character(CHAR);
end Put; -- character

procedure Get(CHAR : out CHARACTER) is

begin
Terminal_Driver.Get_Character(CHAR);
end Get; -- character

procedure Put(STR : STRING) is
begin
for 1 in STR’range loop
Terminal_Driver.Put_Character(STR(1));
end loop;
end Put; -- String

procedure Get(STR : out STRING) is

begin
for 1 in STR’range loop

61-

Distributed Issues Final Report

Terminal_Driver.Get_Character(STR(1));
end loop;
end Get; -- String

procedure Put_Line(STR : STRING) is

begin
for I in STR’range loop

Terminal_Driver.Put_Character(STR(1));

end loop;
Terminal_Driver.Put_Character(ASCI1.CR);
Terminal _Driver.Put_Character(ASCII.LF);

end Put_Line;

procedure Get_Line(STR : out STRING; LENGTH : out INTEGER) is
CHAR : CHARACTER := ASCII.NUL;
LEN : INTEGER := STR/first;
begin
while CHAR /= ASCII.CR and LEN <= STR’last loop
Terminal_Oriver.Get_Character(CHAR);
STRCLEN) := CHAR;
LEN := LEN + 1;
end loop;
end Get_Line;

procedure Skip_Line is
CHAR : CHARACTER := ASCII.NUL;
begin
while CHAR /= ASCII.CR loop
Terminal_Driver.Get_Character(CHAR);
end loop;
end Skip_Line;

end Debug_l10;

-62-

Distributed Issues Final Report

--% UNIT: Distrib Package Spec.

--X Effects: Provides parameters to control task arrays and work lists.--
--% Modifies: No global data is modified other than in this spec.
--% Requires: Depends on presence of Distrbuted Runtime for # of tasks. --

--% Raises: No explicitly raised exceptions are propagated.
--% Engineer: T. Griest.

PACKAGE SPEC : Distrib

OPERATION :

This package controls the parameters for automatically performing a

division of the guidance workload. In this case, a large array can be

broken down so that two or more tasks can perform their operations on the

array at the same time (if true multi-processing is in effect).

-- Modifications Log

-- 88-12-05 :

-- 89-12-06 :

with Types;

=> Original Created.
=> Enhanced to support dynamic configuration/reconfiguration

NUM_TARGETS
NUM_ROCKETS

package Distrib is

Configuration Setting for number of Rockets and Targets
These are set during package body elaboration.

Types .WORD_INDEX;
: Types.WORD_INDEX;

Max_num_guide_tasks is used to determine the maximum number of guide
tasks which could be created. It is used simply to define the size of
the index arrays.

Max_guide_tasks

: constant := 2;

NUM_GUIDE_TASKS contains the ACTUAL number of guide tasks in the current

configuration.

It is initialized by a call to the distributed runtime

during package elaboration.

NUM_GUIDE_TASKS

: Types.WORD_INDEX;

-63-

Distributed Issues Final Report

-- MASTER is TRUE iff this processor has been configured as the master
-- processor.

MASTER : BOOLEAN;

-- The following two “index" arrays are used by the Congrol task to
-- divide work among the possible guidance tasks. These values are
-- also intialized according to the configuration control tables in
-- in the Distrib package body during elaboration.

GUIDE_LOW : array(Types.WORD_INDEX range 1..Max_guide_tasks)
of Types.WORD_INDEX;
GUIDE_HIGH : array(Types.WORD_INDEX range 1..Max_guide_tasks)

of Types.WORD INDEX;
-- RESTART is used to siop operation of the BDS and allow the operator
-- setup a different configuration. [t is only called when the MODE
-- button is pressed while the RESET button is held down on the mouse.
procedure Restart; -- DOES NOT RETURN TO CALLER!
pragma INTERFACE(ASM86, Restart);
pragma INTERFACE_SPELLING(Restart, "“D1DRTE?RESTART");

end Distrib;

-64-

Distributed Issues Final Report

--% UNIT: Engage Procedure Spec. --
--% Effects: Determines if Rocket is to be launched, and at what target.-
--% Modifies: No global data is modified. --
--% Requires: Status package must set mode and airborne counts. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: M. Sperry. .-

--| SUBPROGRAM SPEC : Engage

-

- This function determines which target will be selected when it is
--| determined that a rocket needs a target to aim at.

ol
-- Modifications Log

-- 88-11-10 : MPS => Original Created.

with Target;

function Engage(TARGET_INFO : in Target.TARGET_DATA_LIST_TYPE) return
Target .TARGET_ID_TYPE;

-65-

Distributed [ssues Final Report

--% UNIT: Engage Procedure Body. --
--% Effects: Determines if Rocket is to be Launched, and at what target.-
--% Modifies: No global data is modified. -
--% Requires: Status package must set mode and airborne counts. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: M. Sperry. --

SUBROGRAM BODY : Engage

|

I

I

] The Engage procedures performs two functions based on the MODE. The

| MODE is either MANUAL or AUTOMATIC. In MANUAL mode the engage procedure

| first determines if a rocket can be launched and not exceed the maximum

| allowable rockets. It then reads the shared variables of the reticle’s
--| position and the LAUNCH button on the mouse and determines if the reticle

I

I

I

I

I

|

I

one closer. In AUTOMATIC mode, if there are not too many active rockets,

is called during every rocket control task iteration. The returned
parameter TARGET is zero if no target should be engaged, otherwise it
indicates the selected targets id.

-- Modifications Log

-- 88-11-20 : MPS => Original Created.

with Interrupt_Control;
with Status;
with Mouse Buffer;
with Types;
with Config;
with Shapes;
with Time_Stamp;
with Distrib;
pragma ELABORATE(Interrupt_Control, Status, Mouse Buffer, Distrib);

function Engage(TARGET_INFO : in Target.TARGET_DATA_LIST TYPE) return
Target.TARGET_ID_TYPE is

use Types; -- for operators
use Status; -- for operators
RETICLE_X_PIXEL : Types.WORD; -- reticle in PIXEL coordinates
RETICLE_Y_PIXEL : Types.WORD; -- reticle in PIXEL coordinates
RETICLE X _GRID : Types.METERS; -- reticle in GRID coordinates
RETICLE_Y_GRID : Types.METERS; -- reticle in GRID coordinates

PREV_DISTANCE : Types.METERS;

-66-

is in proximity to a target. If so, that target is chosen unless there is

then the target closest to the bottom of the screen is chosen. This routine

Distributed Issues Final Report

DISTANCE_X : Types.METERS;
DISTANCE Y : Types.METERS := Config.meters_in_battle_area;
TOTAL_DISTANCE : Types.METERS;
TARGET_ID : Target.TARGET_ID_TYPE;
begin
Time_Stamp.Log(0018); --$TP(0018) Engage start
TARGET_ID := 0; -- default

if Status.STATUS_CONTROL(Status.AIRBORNE).DATA <
Types.WORD(Distrib.NUM_ROCKETS)
then
if Status.MODE = Status.MANUAL then
if Mouse_Buffer.LAUNCH then
-- read ABS_X and ABS_Y in Mouse_Buffer, then convert to METERS types.
-- Then, find closest target in list to reticle, and give it back.
Interrupt_Control.Disable; -- go atomic while reading
RETICLE_X_PIXEL := Mouse_Buffer .NEW_ABS_X;
RETICLE_Y_PIXEL := Mouse_Buffer.NEW_ABS_Y;
Mouse_Buffer.LAUNCH := FALSE;
Interrupt_Control.Enable;
RETICLE_X_GRID :=
Types .METERS(Types.METERS(RETICLE_X_PIXEL -
Config.battlefield screen_Lleft) *
Types .METERS(Config.meters_per X_pixel));
RETICLE_Y_GRID :=
Types.METERS(Types.METERS(Config.batt{efield_screen_bottom -
RETICLE_Y_PIXEL) *
Types.METERS(Config.meters_per_Y_pixel));
-- This loop locates the closest target to the reticle center
for ID in Types.TARGET_INDEX_TYPE loop
if TARGET_INFO(ID).STATUS.ACTIVE and then
not TARGET_INFO(1D).STATUS.ENGAGED then
DISTANCE_X := abs(RETICLE_X_GRID - Types.METERS(
TARGET_INFOCID).POSITION_NEW.X));
DISTANCE_Y := abs(RETICLE_Y_GRID - Types.METERS(
TARGET_INFO(ID).POSITION_NEW.Y));
if DISTANCE_X <= Shapes.reticle_X_error and
DISTANCE_Y <= Shapes.reticle_Y_error
then
TOTAL_DISTANCE := Types.METERS(DISTANCE_X * DISTANCE_X) +
Types.METERS(DISTANCE Y * DISTANCE_Y);
if TARGET_ID = 0 or else TOTAL_DISTANCE < PREV_DISTANCE then
PREV_DISTANCE := TOTAL_DISTANCE;
TARGET_ID := ID;

end if; -- distance/target check
end if; -- x and y reticle distance check
end if; -- active/not engaged check
end loop;
end if; -- ltaunch check
else -- automatic mode, search for closest Y value

for ID in Types.TARGET_INDEX_TYPE loop

-67-

Distributed Issucs Final Report

if TARGET_INFO(ID).STATUS.ACTIVE and then
(not TARGET_INFO(ID).STATUS.ENGAGED and
Types.METERS(TARGET_INFO(ID).POSITION_NEW.Y) <= DISTANCE_Y)

then

DISTANCE_Y := Types.METERS(TARGET_INFO(ID).POSITION_NEW.Y);

TARGET_ID := ID;
end if;
end loop;
end if;
end if;
Time_Stamp.Log(0019);
return TARGET_ID;
end Engage;

-- active/not engaged/closest y check

-- mode check
-- number of rockets check
--$TP(0019) Engage end

Distributed Issues Final Report

--% UNIT: Graphics Package Spec. -
--X Effects: Performs all updates to graphics display. --
--% Modifies: No global data is modified. --
--% Requires: Screen must be put in graphics mode by runtime initialize.--
--% Raises: QUEUE_ERROR is raised if no room for move list. --
--% Engineer: T. Griest / M. Sperry. --

PACKAGE SPEC : Graphics

I
!
|
| The Graphics package provides the interface for all screen display
| operations. All activity is performed by the Display task which insures
| that the display is updated in a consistent and timely fashion. The shapes
| that the graphics disptays are all defined in the Shapes package. The
--| MOVE_RECORD is defined as all the elements needed in order to perform a
| draw or erase of an image. A MOVE_LIST is an array of MOVE_RECORDs and
] it is used as a parameter when one of the routines responsible for moving
| an image across the screen needs to rendezvous with Graphics.Display. An
| entire list is enqueued onto one of the priority queues and each element
| is dequeued separately in order to continuously check for more arrivals.
| The high priority queue is currently reserved for the reticle motion.
I

-- Modifications Log

-- 88-08-25 : TEG => Original created.

with Types;
with Config;
with Shapes;

package Graphics is

stack_size : constant := 8192; -- in bytes

-- define screen and graphics constants

subtype COLOR_TYPE is Types.WORD; -- range 0..63; -- 64 colors on EGA
background_color : constant COLOR_TYPE := O0; -- black
reticle_color : constant COLOR_TYPE := 14; -- bright yellow
border_color : constant COLOR_TYPE := 9; -- bright blue
status_color : constant COLOR_TYPE := 15; -- bright white
status_box_color : constant COLOR_TYPE := 9; -+ bright blue
rocket_color : constant COLOR_TYPE := 12; -- bright red
target_color : constant array(Types.TARGET_CLASS_TYPE, BOOLEAN) of

-69-

Distributed Issues Final Report

COLOR_TYPE := ((6, 14), (3, 11), (2, 10y, (5, 13));
-- different color for engage = false/true and target type
no_process : constant COLOR_TYPE := 16; -- don’t process object color

-- define graphics data structures

type MOVE_RECORD is record

XY_OLD : Shapes.PIXEL; -- previous position object held
XY_NEW : Shapes.PIXEL; -- new position

OBJECT : Shapes.SYMBOL_TYPE; -- list of relative offsets
COLOR : COLOR_TYPE; -- color for that object

end record;

type MOVE_LIST_TYPE is array (Types.WORD_INDEX range <>) of MOVE_RECORD;
type PRIORITY_TYPE is (HIGH, LOW);

QUEUE _ERROR : exception; if queue over/underflow

task type Display_Type is
entry Print_Titles(X,Y : Types.WORD;
TITLE : STRING;
COLOR : COLOR_TYPE);
entry Move(PRIORITY : PRIORITY_TYPE; WORK_LIST : MOVE_LIST_TYPE);
pragma PRIORITY(Config.display_priority);
end Display_Type;
for Display_Type’STORAGE_SIZE use INTEGER(Config.bytes _per_storage_unit *
stack_size);
Display : Display_Type;

end Graphics;

--%
--%
--%
--%

Distributed Issues Final Report

UNIT: Graphics Package Body --
Effects: Performs all updates to graphics display. --
Modifies: No global data is modified. --
Requires: A method of access to the EGA BIOS calls. --
Raises: QUEUE_ERROR is raised if no room for move list. --
Engineer: T. Griest / M. Sperry. --

PACKAGE BODY : Graphics

The purpose of the graphics package body is the implementation of the
display task.

TASK BODY : Graphics.Display

The display task is responsible for buffering the various tasks that want
to draw their particular symbol on the screen. The task begins by placing
the screen (via BIOS calls) into high resolution mode 10h. When this
is done, the screen Wwill be in write mode 0 - the BIOS default. In this
mode it is possible to print characters easily by calling the appropriate
BIOS routine. After the statistics have been printed, a change to write
mode 2 is accomplished. This mode permits quick drawing of pixels in the
color needed, and the battlefield border is drawn this way. The rest of
the graphics are also done in this mode. The display task then waits
for a work request to draw a symbol. When a request comes in, it is put
on a prioritized queue. The queue used is a function of the callers’
priority. Now, since there is work to do, the task processes one symbol
at a time, checks to see if other tasks are waiting to gqueue any requests,
and continues processing until no requests are left in any of the queues.
When a request is processed, it’s old position is erased, and it's new
position is drawn. No attempt is made to synchronize with the vertical
retrace since it would slow down the task too much. The penalty associated
with this is a slight flicker of some of the images (especially when the
reticle is being slowly dragged across the screen). When checking if there
is more work to do, using ‘count instead of a select statement was used
because the code generated for ‘count was significantly smaller.

-- Moditications Log

-- 88-08-25 : MPS => Original Created

with Machine_Dependent;

with Interrupt_Control;

with Debug_l10;

with Time_Stamp;

pragma ELABORATE(Machine_Dependent, Interrupt_Control, Debug_IO, Time_Stamp);

71-

Distributed Issues Final Report

package body Graphics is

task body Display_Type is

use Types; -- needed for visibility to “+" operator
buffer_size : constant := 256;

initialize_screen : constant := O; -- for Int 10 BIOS call, fnctn C

dummy_1 : constant := 0; -- dummy parameter

dumm_2 : constant := 0; -- dumy parameter

position_cursor : constant := 2; -- position function is int 10, fnct 2
write : constant := 14; -- write char is int 10, fnct 16#0E#

type CIRCULAR_BUFFER is array(Types.WORD_INDEX range 0 .. buffer_size - 1) of
MOVE_RECORD;

type BUFFER_TYPE is record
ON : Types.WORD_INDEX :
OFF : Types.WORD_INDEX :
DATA : CIRCULAR_BUFFER;
end record;

(= =]
~e we

SET_PRIORITY : PRIORITY_TYPE := PRIORITY_TYPE’FIRST;

BUFFER : array(PRIORITY_TYPE'FIRST..PRIORITY_TYPE’LAST) of BUFFER_TYPE; -- set up queues
NO_WORK : BOOLEAN; -- all queues empty?

WORK_REQUEST : MOVE_RECORD; -- for individual processing

OBJECT : Shapes.0BJECT_PTR; -- current object to move

TEXT_MODE : BOOLEAN; -- printing stats titles?

CHAR : Types.WORD; -- temp for holding string slices

COUNTER : Types.WORD; -- index into TITLE string

procedure Erase_Image(BASE : Shapes.PIXEL;
ITEM : Shapes.OBJECT_PTR) is

SUBPROGRAM BODY : Graphics.Display.Erase_lmage

-l
-
-
--1 A procedure designed to calculate absolute coordinates for the routine
--| Machine_Dependant.Put_Pixel given a shape(OBJECT_PTR) and an absolute
--| reference point where the object is to be placed. No color is specified
--| because the intent of this procedure is to erase, which is actually
--| drawing over the old image in the background cotor.
-
begin
Time_Stamp.L0g(0020); --$TP(0020) Graphics.Erase_Image start
for 1 in ITEM.all’range loop
Machine_Dependent .Put_Pixel (BASE.X + ITEM.all(I).X_OFFSET,
BASE.Y + ITEM.all(l).Y_OFFSET,
background_color);
end loop;

-72-

-

Distributed Issues Final Report

Time_Stamp.Log(0021); --$TP(0021) Graphics.Erase_Image end
end Erase_Image;
pragma INLINE(ERASE_IMAGE);

procedure Draw_Image(BASE : Shapes.PIXEL;
ITEM : Shapes.OBJECT_PTR;
COLOR : COLOR_TYPE) is

-

--| SUBPROGRAM BODY : Graphics.Display.Draw_Image

-l

--| This procedure is functionally the same as Erase_Image except that a
--| color is passed to it so that the object can be drawn in that color.

begin
Time_Stamp.Log(0022); --$TP(0022) Graphics.Draw_Image start
for 1 in ITEM.all’range loop
Machine_Dependent.Put_Pixel(BASE.X + ITEM.all(l).X_OFFSET,
BASE.Y + ITEM.all(I).Y_OFFSET,
COLOR);
end loop;
Time_Stamp.Log(0023); --$TP(0023) Graphics.Draw_image end
end Draw_lmage;
pragma INLINE(DRAW_IMAGE);

procedure [nitialize_Border is

-l

--| SUBPROGRAM BODY : Graphics.Display.lnitialize_Border

-

-4 A procedure which utilizes the Shapes package to place a color border
--| around the screen thus defining the battlefieid area. The reticle never
--| leaves the battlefield area and statistics are never displayed inside
--| the battlefield area.

-
BORDER : MOVE_RECORD;

begin
BORDER.OBJECT := Shapes.DOT;
OBJECT := Shapes.0BJECT_PTR_TABLE(BORDER.OBJECT);
BORDER.COLOR := border_color;

-- draw top and bottom border
for 1 in Config.border_left..Config.border_right loop
BORDER.XY_NEW := (Types.COORDINATE(I),Config.border_top);
Draw_Image(BORDER.XY_NEW,0BJECT,BORDER.COLOR);

-73-

Distributed Issues Final Report

BORDER.XY_NEW := (Types.COORDINATE(1),Config.border_bottom);
Draw_Image(BORDER.XY_NEW,0BJECT,BORDER.COLOR);
end toop;

-- draw left side and right side border
for J in Config.border_top..Config.border_bottom Loop
BORDER .XY_NEW := (Config.border_left,Types.COORDINATE(J));
Draw_Image(BORDER.XY_NEW,OBJECT,BORDER.COLOR);
BORDER.XY_NEW := (Config.border_right,Types.COORDINATE(J));
Draw_Image(BORDER.XY_NEW,OBJECT,BORDER.COLOR);
end loop;
exception
when others => Debug_l0.Put_Line("Exception raised in Graphics.Initialize");
end Initiatize_Border;

procedure Enqueue(PRIORITY : PRIORITY_TYPE; MOVE_REQUEST : MOVE_RECORD) is

-l
--| SUBPROGRAM BODY : Graphics.Display.Enqueue

-l

--| A procedure which enqueues a MOVE_RECORD (a record containing all the
--| information needed to draw a symbol) onto the proper priority queue for
--| later processing. May raise QUEUE_ERROR.

ON_NEW : Types.WORD_INDEX;
begin
Time_Stamp.Log(0024); --$TP(0024) Graphics.Enqueue start

ON_NEW := (BUFFER(PRIORITY).ON + 1) rem buffer_size;
if ON_NEW = BUFFER(PRIORITY).OFF then
raise QUEUE_ERROR;
end if;
Interrupt_Control.Disable; -- compiler bug
BUFFER(PRIORITY).DATA(ON_NEW) := MOVE_REQUEST;
Interrupt_Control .Enable; .-
BUFFER(PRIORITY).ON := ON_NEW;
Time_Stamp.Log(0025); --$TP(0025) Graphics.Enqueue end
end Enqueue;
pragma INLINE(Enqueue);

procedure Dequeue(PRIORITY : PRIORITY_TYPE; MOve REQUEST : out MOVE_RECORD) is

-l
--| SUBPROGRAM BODY : Graphics.Display.Dequeue

-l

--} A procedure which is given the priority of the queue it needs to access
--{ in order to pop the MOVE_RECORD (a record containing drawing information)

-74.

I IR N B I D B BN BN B R B B B BN B BE B B |

Distributed Issues Final Report

--| off that queue. If there are no items on that queue, QUEUE_ERROR is raised.

-
OFF_NEW : Types.WORD_INDEX;

begin
Time_Stamp.Log(0026); --$TP(0026) Graphics.Dequeue start
if BUFFER(PRIORITY).OFF = BUFFER(PRIORITY).ON then
raise QUEUE_ERROR;

end if;
OFF_NEW := (BUFFER(PRIORITY).OFF + 1) rem buffer_size;
Interrupt_Control.Disable; -- compiler bug

MOVE_REQUEST := BUFFER(PRIORITY).DATA(OFF_NEW);
Interrupt_Control .Enable; --
BUFFER(PRIORITY).OFF := OFF_NEW;
Time_Stamp.Log(0027); --$TP(0027) Graphics.Dequeue end
end Dequeue;
pragma INLINE(Dequeue);

begin
NO_WORK := TRUE;
TEXT_MODE := TRUE;
Machine_Dependent.Int10(initialize_screen,
dummy_1, -- dummy variables are unused
dummy_2); -- hi-res graphics mode
Machine_Dependent .Write_Mode_0;
while TEXT_MODE loop
accept Print_Titles(X,Y : Types.WORD;
TITLE : STRING;
COLOR : COLOR_TYPE) do
if TITLE/length > O then
Machine_Dependent.Int10(position_cursor,X,Y);
COUNTER := 1;
white COUNTER <= TITLE’tength Loop
CHAR := Types.WORD(CHARACTER’pos(TITLE(INTEGER(COUNTER))));
Machine_Dependent.Int10(write,
CHAR,
COLOR);
COUNTER := COUNTER + 1;
end (oop;
else
TEXT_MODE :
end if;
end Print_Titles;
end loop;
Machine_Dependent.Write_Mode 2; -- go to write mode 2
Initialize_Border; -- draw battlefield border

FALSE;

-75-

Distributed Issues Final Report

Loop
begin -- exception block
Time_Stamp.Log(0028); --$TP(0028) Graphics task start
if NO_WORK or Move/COUNT > 0 then
Time_Stamp.Log(0112); --$TP(0112) Graphics accept Move start
accept Move(PRIORITY : PRIORITY_TYPE; WORK_LIST : MOVE_LIST_TYPE) do
for I in WORK_LIST’/range loop
Enqueue(PRIORITY, WORK_LIST(I));
end loop;
end Move;
Time_Stamp.Log(0113); --$TP(0113) Graphics accept Move end
NO_WORK := FALSE;
end if;

-- Now there is some work to do, see if any left on highest priority
SET_PRIORITY := PRIORITY_TYPE'FIRST;
loop
if BUFFER(SET_PRIORITY).ON /= BUFFER(SET_PRIORITY) OFF then

Dequeue(SET_PRIORITY,WORK_REQUEST); -- at this point, requests real
OBJECT := Shapes.OBJECT_PTR_TABLE(WORK_REQUEST.CBJECT);
Erase_Image(WORK_REQUEST.XY_OLD, OBJECLT);
Draw_Image (WORK_REQUEST.XY_NiW, OBJECT, WORK_REQUEST.COLOR);
NO_WORK := FALSE;

exit; -- leave lonp if we processed a request
else
NO_WORK := TRUE; -- default

exit when SET_PRIORITY = PRIORITY_TYPE’LAST;
SET_PRIGRITY := PRIORITY_TYPE'SUCC(SET_PRIORITY);
end if;
end loop;

exception
when QUEUE_ERROR => null; -- since error is propagated to calior
when others =>
Debug_10.Put_Line("Error in Display Task");

end; -- exception block
Time_Stamp.Log(0029); --$TP(0029) Graphics task end
end luop;

end Display_Type;

end Graphics;

Distributed Issues Final Report

--% UNIT: Grid_to_Pixel Function Spec. --
--% Effects: Converts battlefield meters X-Y to graphics Pixel X-Y. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. i

--| SUBPROGRAM SPEC : Grid_To_Pixel

-

--| This function provides a transtation to go from the Yreal” battlefield
--| to the screen battlefield. Note that the screen battlefield has the Y
--| component at 0 at the top of the screen and increasing positively down
--| the screen. A diagram in hwconfig.as shows the complete screen.

-- Modifications Log

-- 88-u9-26 : TEG => Original created.

with Shapes;
with Types;

function Grid_to_Pixel(GRID : in Types.POSITION_TYPE) return Shapes.Pixel;
pragma [INLINE(Grid_to Pixel);

-77-

Distributed Issues Final Report

--% UNIT: Grid_to_Pixel Function Spec. --
--% Effects: Converts battlefield meters X-Y to graphics Pixel X-Y. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. .-

SUBPROGRAM BODY : Grid_To_Pixel

|

I

I

| Translate from Battlefield Grid coordinates in meters to pixels
--| on the screen. This means applying scale factors for x/y and

| providing offsets to battlefield area on screen. NOTE: since

| battlefield coordinates have 0,0 in lower left; and graphics

| coordinates have 0,0 in upper left, this involves a transpose of

| the Y axis (thus the ‘-').

|

-- Modifications Log
-- 88-10-20 : TEG => Original created.
-- 89-01-04 : MPS => Changed Time_Stamp to properiy time the routine.

with Config;
with Time_Stamp;
with Math;
pragma ELABORATE(Time_Stamp, Math);

function Grid_to_Pixel(GRID : in Types.POSITION_TYPE) return Shapes.Pixel is
use Types;
use Math;
TEMP : Types.LONG_FIXED;
PIX : Shapes.PIXEL;

begin
Time_Stamp.Log(0030); --$TP(0030) Grid_To_Pixel start
TEMP := GRID.X / Types.LONG_FIXED(Config.meters_per_x_pixel);
PIX.X := Config.battlefield screen_left + Types.COORDINATE(TEMP);
TEMP := GRID.Y / Types.LONG_FIXED(Confi~.meters_per_y pixel);
r. " 1 := Config.battlefielc_screen_left + Types.COORDINATE(TEMP);
Time_Stamp.lLog(0031); --$TP(0031) Grid_To_Pixel end
return PIX;

end Grid_to_Piae;

-78-

Distributed Issues Final Report

--% UNIT: Guidance Task Subunit .-
--% Effects: Calls "Guide" to compute next rocket aimpoint for every --
--% active rocket in the input list. --

--% Modifies: No global data is modified. .-
--X Requires: No initialization is required. --
--X Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. .-

TASK BODY : Rocket.Guidance

!

I

I

| TYask Guidance is used as a template for an array of tasks which compute

| guidance information for a specified number of rockets. The first thing
-+] it does is it gets the history information for the rocket/target list

| and makes a local copy. The index of the history array (containing previous

| positions and which rockets were previously active) is ROCKET_ID. The

| entire guide_list array is passed, even though many of the entries may be

| inactive. Only active rockets (those that are in the air or taking off)

| are given guidance. The entire array however is again passed back to the

| caller, the rocket control task.

I

-- Modifications Log
-- 88-10-12 : TEG => Original created.
-- B9-11-22 : MPS => Adjusted to work with new Guide procedure.

with Guide;
with Time_Stamp;
with Interrupt_Control;
pragma ELABORATE(Guide, Time_Stamp, Interrupt_Control);

separate(Rocket)

task body Guidance_Type is
use Types; -- for operator visibility
NEXT_GUIDE_LIST : AIMPOINT_LIST_TYPE(1..Config.max_rockets);

NEXT_HISTORY_LIST : POSITION_LIST_TYPE(1..Config.max_rockets);
FIRST_ROCKET_ID : Types.WORD_INDEX;

LAST_ROCKET_1D : Types.WORD_INDEX;
begin
Loop -- main processing loop
begin -- exception block
Time_Stang.Log(0032); --$TP(0032) Guidance task start
Time_Stamp.Log(0033); --$TP(0033) Guidance accept History start

accept History(AIM_DATA : in POSITION_LIST_TYPE) do

-79.

Distributed Issues Final Report

FIRST_ROCKET_ID := AIM_DATA’first;

LAST_ROCKET_ID := AIM_DATA’last;
Interrupt_Control .Disable; --BUGFIX for compiler bug (direction flag)
NEXT_HISTORY_LIST(FIRST_ROCKET_ID..LAST_ROCKET_ID) := AIM_DATA;
Interrupt_Control.Enable; --BUGFIX for compiler bug

end History;

Time_Stamp.Log(0034); --$TP(0034) Guidance accept History end

-- process list to create guidance information

for ROCKET_ID in FIRST_ROCKET_ID..LAST_ROCKET_ID loop
if NEXT_HISTORY_LIST(ROCKET_ID).ACTIVE then
Guide(ROCKET_1D,NEXT_HISTORY_LIST(ROCKET_ID).ROCKET_POS,
NEXT_HISTORY_LIST(ROCKET_ID).TARGET_POS,
NEXT_GUIDE_LIST(ROCKET_ID));

end if;
end loop;
Time_Stamp.Log(0035); --$TP(0035) Guidance accept Next_Guidance start
accept Next_Guidance(AIMPOINT_LIST : out AIMPOINT_LIST_TYPE) do
if AIMPOINT_LIST'first /= FIRST_ROCKET_ID or -- make sure list hasn’t
AIMPOINT_LIST’last /= LAST_ROCKET_ID -+ changed from History
then
raise GUIDANCE_LIST_ERROR;
else

Interrupt_Control.Disable; --BUGFIX for compiler bug (direction flag)
AIMPOINT_LIST := NEXT_GUIDE_LIST(FIRST_ROCKET_ID..LAST_ROCKET_ID);

Interrupt_Control .Enable; -~BUGFIX for compiler bug (direction flag)
end if;
end Next_Guidance;
Time_Stamp.Log(0036); --$7P(0036) Guidance accept Next_Guidance end
exception

when others =>
Debug_10.Put_Line("Error in GUIDANCE TASK");

end; -- exception block
Time_Stamp.Log(0037); --$TP(0037) Guidance task end
end loop; -- main processing loop

end Guidance_Type;

-80-

Distributed Issues Final Report

--X UNIT: Guide Function Spec. --
--% Effects: Computes a new aimpoint based on rocket/target positions. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propaga‘ed. --
--% Engineer: T. Griest. .-

--| SUBPROGRAM SPEC : Guide

-l

--|{ The Guide function is used to find an aimpoint for the rocket to fly at
--| when it is in flight. This includes guidance for the rocket during it's

--| launch phase. It takes as parameters the rocket_index, the latest positions
--| of both the rocket and target and returns two Binary Angle Measuements,

--| one Azimuth and one Elevation per cal'.

-- Modifications Log
-- 88-12-05 : TEG => Original created.
-- 89-11-07 : TEG => Changed from 8 function to a procedure call.

with Types;

procedure Guide(ROCKET_ID : Types.ROCKET_INDEX_TYPE;
ROCKET_POS : Types.POSITION_TYPE;
TARGET_POS : Types.POSITION_TYPE;
NEW_AIMPOINT : out Types.AIMPOINT_TYPE);
--pragma INLINE(Guide);

-81-

Distributed Issues Final Report

--% UNIT: Guide Function Body. --
--% Effects: Computes a new aimpoint based on rocket/target positions. --
--% Modifies: Aim_Data Rocket Info is modified. --
--% Requires: No initialization is required. --
--X Raises: No explicitly raised exceptions are propagated. -
--% Engineer: T. Griest. --

SUBPROGRAM BOOY : Guide

!
!
I
| The Guide function takes the most recent two postions of a rocket/target
| pair, and computes an aimpoint for the rocket to intercept.
--| Because the target is assumed to be moving, a process which
| extrapolates the target’s position forward is used. However, this section
| is only called upon when the rocket is close to the target (TIME_TO_TARGET).
| The basic theory of operation is to control the rocket attitude by changing
| the previous aimpoint incrementaily according to the amount of change
| desired in the acceleration from the last interval.
I

-- Modifications Log
-- 88-11-09 : TEG => Original created.
-- 89-11-14 : TEG => Equations were improved upon to be more realistic.

with Config;

with Types;

with Math;

with Rocket;

with Aim_Data;

with Aimpoint; -- function
pragma ELABORATE(Math,Aimpoint);

procedure Guide(ROCKET_ID : Types.ROCKET_INDEX_TYPE;
ROCKET_POS : Types.POSITION_TYPE;
TARGET_POS : Types.POSITION_TYPE;
NEW_AIMPOINT : out Types.AIMPOINT_TYPE) is

use Types; -- for operators

use Aim_Data; -- for enumeration types AXIS (x,y,z)

use Math; -- for speedy fixed point math

accuracy : constant := 1.0; -- resolution on TIME_TO_TARGET
height_factor : constant := 6; -- boost done when z >= 1/6 (dist x_y)

integration_interval : constant := 4.0; -- periods to integration acceleration
integration_int_sq : constant := (integration_interval-1.0) ** 2;
furthest_extrapolate : constant : 300.0; -- don’t bother going beyond

max_change : constant := 3.0; -- maximum change to acceleration

-82.

limit_rock_extrap

ROCKET_VELOC_1
ROCKET_VELOC_2
TARGET_VELOC_1
ROCKET_ACCEL
ROCK_TARG_DELTA
BOOST_LIMIT
ROCK_TARG_DSQ_X
ROCK_TARG_DSQ_Y
ROCK_TARG_DSQ_Z
ROCK_TARG_DIST
ROCK_TARG_XY_DIST
ROCK_SQ_X
ROCK_SQ_Y
ROCK_SQ_2
ROCK_VELOC_VECT
ROCK_XY_VELOC_VECT
TIME_TO_TARGET
EXTRAP_TARG
EXTRAP_ROCK
DESIRED_VELOC
DESIRED_ACCEL
CHANGE_ACCEL
SUM
SUM_VELOCITY
AZIMUTH
ELEVATION
INTEGRATION_PERIOD
INTEGRATION_SQ
begin

: constant Types.LONG_FIXED
(Config.meters_in_battle_area + Types.LONG_FIXED(1000.0)));

Distributed Issues Final Report

:= Types.LONG_FIXED(

: Aim_Data.RATE_REC_TYPE;

Aim_Data.RATE_REC_TYPE;
Aim_Data.RATE_REC_TYPE;

: Aim_Data.RATE_REC_TYPE;
: Types.POSITION_TYPE;
: Types.LONG_FIXED;

Types.LONG_FIXED;

: Types.LONG_FIXED;
: Types.LONG_FIXED;

Types.LONG_FIXED;

: Types.LONG_FIXED;
: Types.RATE_TYPE;
: Types.RATE_TYPE;
: Types.RATE_TYPE;

Types.RATE_TYPE;

: Types.RATE_TYPE;
: Types.LONG_FIXED;

: Types.POSITION_TYPE;

: Types.POSITION_TYPE;

: Aim_Data.RATE_REC_TYPE;
: Aim_Data.RATE_REC_TYPE;
: Aim_Data.RATE_REC_TYPE;

Types.LONG_FIXED;

: Types.LONG_FIXED;
: Types.BAM;

.

Types .BAM;
Types.LONG_FIXED;

: Types.LONG_FIXED;

-- If a new launch is taking place, initialize the Aim_Data data base.

if ROCKET_POS.Y = Config.launch_y and ROCKET_P0OS.X = Config.launch_x then

TARGET_POS;
TARGET_POS;
ROCKET_POS;

Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_TARG :=
Aim_Data.ROCKET_INFO(ROCKET_ID).CURR_TARG :=
Aim_Data.ROCKET_INFO/ROCKET_ID).PREV_ROCK :
Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_ROCK := ROCKET_POS;
Aim_Data.ROCKET_INFOCROCKET_1D).CURR_ROCK := ROCKET_POS;
Aim_Data.ROCKET_INFO(ROCKET_ID).OLD_AIMPOINT :=
(Config.launch_elevation,Config. launch_azimuth);
Aim_Data.ROCKET_INFO(ROCKET_ID).BOOST_PHASE := TRUE;
end if;

-- First update history of data.
Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_TARG :=

Aim_Data.ROCKET_INFO(ROCKET_1D).CURR_TARG:
Aim_Data.ROCKET_INFO(ROCKET_ID).CURR_TARG := TARGET_POS;

-83-

Distributed Issues Final Report

Aim_Data.ROCKET_INFO(ROCKET_ID).PREV_ROCK :=
Aim_Data.ROCKET_INFO(ROCKET _ID).LAST_ROCK;
Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_ROCK :=
Aim_Data.ROCKET_INFO(ROCKET_ID).CURR_ROCK;
Aim_Data.ROCKET_INFO(ROCKET_ID).CURR_ROCK := ROCKET_POS;
-- First check Target’s Y coordinate to avoid friendiy fire.
-- IF ROCKET IS GOING OVER TARGET, SIMPLY SET AIMPOINT STRAIGHT DOWN.
if TARGET_POS.Y < ROCKET_PO0S.Y then
Aim_Data.ROCKET_INFO(ROCKET_ID).OLD_AIMPOINY := (ELEVATION => -16384,
AZIMUTH => Aim_Data.ROCKET_INFOCROCKET_ID).OLD_AIMPOINT.AZIMUTH);
NEW_AIMPOINT := Aim_Data.ROCKET_INFO(ROCKET_ID).OLD_AIMPOINT;
return;
end if;

-- Compute Rocket Velocity in all three axes.

ROCKET_VELOC_1.X := Types.RATE_TYPE(ROCKET_POS.X -

Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_ROCK.X); -- rocket change X
ROCKET_VELOC_1.Y := Types.RATE_TYPE(ROCKET_POS.Y -
Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_ROCK.Y); -- rocket change Y

ROCKET_VELOC_1.2 := Types.RATE_TYPE(ROCKET_POS.Z -
Aim_Data.ROCKET_INFO(ROCKET_1D).LAST_ROCK.2); -- rocket change 2

ROCKET_VELOC_2.X := Types.RATE_TYPE(
Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_ROCK.X -
Aim Data.ROCKET_INFO(ROCKET _ID).PREV_ROCK.X); -- rocket change X

ROCKET_VELOC_2.Y := Types.RATE_TYPE(
Aim_Data.ROCKET_INFO(ROCKET_1D).LAST_ROCK.Y -
Aim_Data.ROCKET_INFO(ROCKET_ID).PREV_ROCK.Y); -- rocket change Y

ROCKET_VELOC_2.Z := Types.RATE_TYPE(
Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_ROCK.Z -
Aim_Data.ROCKE " _INFO(ROCKET_ID).PREV_ROCK.Z); -- rocket change Z

-- Compute Target Velocity in all three axes.
TARGET_VELOC_1.X := Types.RATE_TYPE(TARGET_POS.X -
Aim Data.ROCKET_INFO(ROCKET_ID).LAST_TARG.X); -- target change X
TARGET _VELOC_1.Y := Types.RATE_TYPE(TARGET_POS.Y -
Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_TARG.Y); -- target change Y
TARGET _VELOC_1.2 := Types.RATE_TYPE(TARGET_POS.Z -
Aim_Data.ROCKET_INFO(ROCKET_ID).LAST_TARG.Z); -- target change 2

-- Compute Acceleration for Rocket in all three axes.

ROCKET_ACCEL.X := ROCKET_VELOC_1.X - ROCKET_VELOC_2.X;
ROCKET_ACCEL.Y := ROCKET_VELOC_1.Y - ROCKET_VELOC_2.Y;
ROCKET_ACCEL.Z := ROCKET_VELOC_1.Z - ROCKET_VELOC_2.Z;

-- Compute velocity vector fur rocket using the formula

-84-

Distributed Issues Final Report

-- v = sqgrt(eurr_rock.X**2 + curr_rock.y**2 + curr_rock.z**2)
ROCK_S@_X := ROCKET_VELOC_1.X * ROCKET_VELOC_1.X;
ROCK_SQ_Y := ROCKET_VELOC_1.Y * ROCKET_VELOC_1.Y;
ROCK_SQ_2Z := ROCKET_VELOC_1.Z * ROCKET_VELOC_1.Z;

SUM_VELOCITY := Types.LONG_FIXED(ROCK_SQ_X) + Types.LONG_FIXED(ROCK_SQ_Y);

ROCK_XY_VELOC_VECT := Types.RATE_TYPE(Math.Sqrt(SUM_VELOCITY));

ROCK_VELOC_VECT := Types.RATE_TYPE(Math.SQrt(SUM_VELOCITY +
Types.LONG_FIXED(ROCK_SQ_Z)));

-- Compute distance between rocket and target using the formula
-- d = sqrt(d(X)**2 + d.Y**2 + d.2**2)
- where d(i) = curr_rock(i) - curr_targ(i)

ROCK_TARG_DELTA.X := TARGET_POS.X
ROCK_TARG_DELTA.Y := TARGET_POS.Y
ROCK_TARG_DELTA.Z := TARGET_POS.Z

ROCKET_POS.X;
ROCKET_POS.Y;
ROCKET_POS.Z;

ROCK_TARG_DSQ_X := ROCK_TARG_DELTA.X * ROCK_TARG_DELTA.X;
ROCK_TARG_DSQ_Y := ROCK_TARG_DELTA.Y * ROCK_TARG_DELTA.Y;
ROCK_TARG_DSQ_Z := ROCK_TARG_DELTA.Z * ROCK_TARG_DELTA.Z;

SUM := ROCK_TARG_DSQ_X + ROCK_TARG_DSG_Y + ROCK_TARG_DSQ_Z;
ROCK_TARG_DIST := Math.Sqrt(SUM);

-- Compute rocket time to target, ITERATION TAKES INTO ACCOUNT
-- changes in rocket velocity and target motion (NOTE: change in
-- rocket acceleration is NOT included)

if ROCK_VELOC_VECT > 0.01 then
TIME_TO_TARGET := ROCK_TARG_DIST / ROCK_VELOC_VECT;

-- Extrapolate target position based on TIME_TO_TARGET.

-- Since TIME_TO_TARGET does not take into account rocket accelaration,
-- it tends to be way off during low rocket velocities. To reduce the
-- effect of this, limit the extrapolation to a reasonable period.

if TIME_TO_TARGET > furthest_extrapolate then
TIME_TO_TARGET := furthest_extrapolate;
end if;
EXTRAP_TAPG.X := TARGET_POS.X + TARGET_VELOC_1.X * TIME_TU_TARGET;
EXTRAP_TARG.Y := TARGET_POS.Y + TARGET_VELOC_1.Y * TIME_TO_TARGET;

-- prevent from extrapolating the target behind the rocket
if EXTRAP_TARG.Y < ROCKET_POS.Y then
EXTRAP_TARG.Y := ROCKET_POS.Y;

end if;
EXTRAP_TARG.Z := TARGET_POS.Z + TARGET_VELOC_1.Z * TIME_TO_TARGET;

.85-

Distributed Issues Final Report

else
TIME_TO_TARGET := integration_interval + 1.0;
EXTRAP_TARG.X : TARGET_POS.X;
EXTRAP_TARG.Y : TARGET_POS.Y;
EXTRAP_TARG.Z : TARGET_POS.Z;

end if;

if TIME_TO_TARGET < integration_interval then

INTEGRATION_PERIOD := TIME_TO_TARGET / Types.WORD(2);

if INTEGRATION_PERIOD < 1.0 then

INTEGRATION_PERIOD := 1.0;

end if;

INTEGRATION_SQ := (INTEGRATION_PERIOD-1.0) * (INTEGRATION_PERIOD-1.0);
else

INTEGRATION_PERIOD := integration_interval;

INTEGRATION_SQ := integration_int_sq;
end if;

Compute where the ROCKET will be at the end of the INTEGRATION period.
All velocities will be calculated for that point to target. Limit the
extrapolations to reasonable values.

EXTRAP_ROCK.X := ROCKET_POs.X + ROCKET_VELOC_1.X * (INTEGRATION_PERIOD-1.0) +
(ROCKET_ACCEL.X / Types.WORD(2)) * INTEGRATION_SQ;
if EXTRAP_ROCK.X > limit_rock_extrap then
EXTRAP_ROCK.X := limit_rock_excrap;
end if;
EXTRAP_ROCK.Y := ROCKET_POS.Y + ROCKET_VELOC_1.Y * (INTEGRATION_PERIOD-1.0) +
(ROCKET_ACCEL.X / Types.WORD(2)) * INTEGRATION_SQ;
if EXTRAP_ROCK.Y limit_rock_extrap then
EXTRAP_ROCK.Y := limit_rock_extrap;
end if;
EXTRAP_ROCK.Z := ROCKET_POS.Z + ROCKET_VELOC_1.2 * (INTEGRATION_PERIOD-1.0) +
(ROCKET_ACCEL.X / Types.WORD(2)) * INTEGRATION_SQ;
if EXTRAP_ROCK.2 > limit_rock_extrap then
EXTRAP_ROCK.2 := limit_rock_extrap;
end if;

ROCK_TARG DELTA.X := EXTRAP_TARG.X - EXTRAP_ROCK.X;
RUCK_TARG DELTA.Y := EXTRAP_TARG.Y - EXTRAP_ROCK.Y;
ROCK_TARG_DELTA.Z := EXTRAP_TARG.Z - EXTRAP_ROCK.Z;

ROCK_TARG_DSQ X := ROCK_TARG_DELTA.X * ROCK_TARG_DELTA.X;
ROCK_TARG_DSQ_Y := ROCK_TARG_DELTA.Y * °0CK_TARG_DELTA.Y;
ROCK_TARG_DSQ_2 := ROCK_TARG_DELTA.Z * ROCK_TARG_DELTA.Z;

SUM := ROCK_TARG_DSG_X + ROCK_TARG_DSQ_Y + ROCK_TARG_DSQ_Z;

ROCK_TARG_DIST := Math.Sqrt(SUM);
ROCK_TARG_XY DIST := Math.Sqrt(ROCK_TARG_DSQ_X + ROCK_TARG_DSQ_Y);

-86-

J

Distributed Issues Final Report

-- Compute Desired Velocities in each axis for the end of INTEGRATION period.
-- If distance to target is too small to measure, then don’t bother to find a
-- new desired velocity or acceleration because the rocket has already hit

-- the target by now!

if ROCK_TARG_XY_DIST /= 0.0 then

DESIRED_VELOC.X := ROCK_XY_VELOC_VECT *
(ROCK_TARG_DELTA.X / ROCK_TARG_XY_DIST);
ROCK_XY_VELOC_VECT *
(ROCK_TARG_DELTA.Y / ROCK_TARG_XY_DIST);
DESIRED_VELOC.Z := ROCK_VELOC_VECT * (ROCK_TARG_DELTA.Z / ROCK_TARG_DIST);

DESIRED_VELOC.Y :

-- Compute Desired Accelerations

DESIRED_ACCEL.X := (DESIRED_VELOC.X - ROCKET_VELOC_1.X) / INTEGRATION_PERIOD;
DESIRED_ACCEL.Y := (DESIRED_VELOC.Y - ROCKET_VELOC_1.Y) / INTEGRATION_PERIOD;
DESIRED_ACCEL.Z := (DESIRED_VELOC.Z - ROCKET_VELOC_1.2Z) / INTEGRATION_PERIOD;

-- Compare Current Rocket Acceleration to Desired Rocket Acceleration
-- to produce Change in Acceleration

end if;
CHANGE_ACCEL .X := DESIRED_ACCEL.X - ROCKET_ACCEL.X *
Hath.SIN(Aim_Data.ROCKET_INFO(ROCKET_ID).OLD_AIMPOINT.AZ!MUTH):

-- LIMIT THE CHANGE IN ACCELERATION

if abs CHANGE_ACCEL.X > max_change then
if CHANGE_ACCEL.X < 0.0 then

CHANGE_ACCEL.X := -max_change;
else
CHANGE_ACCEL.X := max_change;
end if;
end if;

CHANGE_ACCEL.Z := DESIRED_ACCEL.Z - ROCKET_ACCEL.Z;
if abs CHANGE_ACCEL.Z > max_change then
if CHANGE_ACCEL.Z < 0.0 then
CHANGE_ACCEL.Z := -max_change;
else
CHANGE_ACCEL.Z :
end if;
end if;

max_change;

-- Now translate from acceleration change requests to new aimpoint

Aim_Data.ROCKET_INFOCROCKET_ID).OLD_AIMPOINT :=

.87-

Distributed Issues Final Report

AIMPOINT(Aim_Data.ROCKET_INFO(ROCKET_ID).OLD_AIMPOINT,CHANGE_ACCEL);
-- Now check if BOOST PHASE, if so go UP by adjusting ELEVATION. Do not adjust
-- AZIMUTH because it is already pointing in the correct direction.
if Aim_Data.ROCKET_INFO(ROCKET_ID).BOOST_PHASE then
BOOST_LIMIT := ROCK_TARG_XY_DIST / Types.WORD(height_factor);
if ROCKET_POS.2 > BOOST_LIMIT then
Aim_Data.ROCKET INFO(ROCKET_ID).BOOST_PHASE := FALSE;
end if;
Aim_Data.ROCKET_INFO(ROCKET_ID).OLD_AIMPOINT.ELEVATION :=
Config.launch_elevation;
end if; -- boost_phase check
NEW_AIMPOINT := Aim_Data.ROCKET_INFO(ROCKET_ID).OLD_AIMPOINT;
end Guide;

-88-

Distributed Issues Final Report

--% UNIT: Guide_Buf Task Subunit --
--% Effects: Provides asynchronous comm. between simulator and Controi.--
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T, Griest. --

TASK BODY : Simulate.RDL.Guide_Buf

The Guide_Buf task acts as a buffer between the rocket data link
support task Rocr_Sup and the Rocket.Control task which processes
the rocket data. The direction flow is from Rocket.Controil to the

to use previous guidance messages if Rocket.Control is late sencing 1t’s

that before the main procedure gets a chance to run, Rock_Sup will

wait at the accept for at least one current guidance message, the

first one. After the first guidance message is received, because

timing of the system is derived from Rock_Sup, Rock_Sup no longer will
need to wait for a new guidance message from Control. This operation
reflects the fact that the rockets will continue to travel through space

|
I
|
I
I
I
|
!
I
--| new guidance message. However, it is set to zero at the start so
|
[
I
1
|
|
| regardless of whether there is guidance for them or not.
!

-- Modifications Log

-~ 88-10-20 : TEG => Original created.

with Debug_I0;
with Time_Stamp;

separate (Simulate.RDL)

task body Guide_Buf_Type is

use Types;
start : constant Types.WORD _INDEX := 1; -- start of arrays
GUIDE_MSG : Rocket .ROCKET_GUIDE_MSG_TYPE;
MSG_COUNT : Types.WORD := 0; -- if a message has been buffered
begin
loop
Time_Stamp.lLog(0040); --$TP(0040) Guidebuf task start
select
accept Put_Guide(DATA : in Rocket.ROCKET_GUIDE_MSG_TYPE) do
Time_Stamp.Log(0041); --$TP(0041) Guidebuf accept Put_Guide start
GUIDE_MSG.NUM_ROCKETS := DATA.NUM_ROCKETS; -- copy data

Pock_Sup task, even though there are only accept statements here. This is
to ease timing constraints. The purpose of MSG_COUNT is to allow Rock_3up

Distributed Issues Final Report

GUIDE_MSG.ROCKET_GUIDE_LIST(start..DATA.NUM_ROCKETS) :=
DATA.ROCKET_GUIDE_LIST(start..DATA.NUM_ROCKETS):
MSG_COUNT := 1; -- only meaningful that it is > 0
Time_Stamp.Log(0042); --$TP(0042) Guidebuf accept Put_Guide end
end Put_Guide;
or
when MSG_COUNT > 0 =>
accept Get_Guide(DATA : out Rocket.ROCKET_GUIDE_MSG_TYPE) do
Time_Stamp.Log(0043); --$TP(0043) Guidebuf accept Get_Guide start
DATA.NUM_ROCKETS := GUIDE_MSG.NUM_ROCKETS;
D/ TA.ROCKET_GUIDE_LIST(start..GUIDE_MSG.NUM_ROCKETS) :=
GUIDE_MSG.ROCKET _GUIDE_LIST(start..GUIDE_MSG.NUM_ROCKETS);
MSG_COUNT := 1; -- do keep multiple copies
Time_Stamp.Log(0044); --$TP(0044) Guidebuf accept Get_Guide end
end Get_Guide;
end select;
Time_Stamp.Log(0045); --$TP(0045) Guidebuf task end
end loop;
exception
when others =>
Debug_l0.Put_Line("GUIDE_BUF termination due to exception.");
end Guide_Buf_Type;

-90-

i

i

L--------‘-A--

Distributed Issues Final Report

--% UNIT

--% Effects
--% Modifies
--% Requires
--% Raises

: Hardware Configuration Spec.
: None.

: Nothing.

: The hardware defined below.
: No exceptions.

--% Engineer : M. Sperry.

PACKAGE SPEC :

as a pointing

-- Modifications L

-- 89-08-08 : MPS
-- 89-11-19 : MPS

with Types;
with Low_Level_lO;

package HW_Config

!
|
I
I
--| the BDS was originally implemented upon.
I
|
I
I
I

HW_Config

This package is designed to familiarize the user with the hardware that

It is implemented on a TANDY 4000

with an EGA screen, utilizing a Logitech C7 Serial Mouse on serial port COM2

device. The timer chip addresses and values are defined.

og

=> Original created.

Note : Some machine addresses (for the EGA especially) are in the package
Machine_Dependent.

=> Added timer chip addresses and constants

is

-- The following addresses are used for this machine.

COM2_data
COM2_int_enable
COM2_int_ident
COM2_control

COM2_modem_control :

COM2_status

pic_8259
pic_8259_mr

counter_two_addr

: constant Low_Level_[O.PORT_ADDRESS := 16#2F8%;
: constant tow_Level_l0.PORT_ADDRESS := 16#2F9#;
: constant Low_Level_[0.PORT_ADDRESS := 16#2FA¥;
: constant Low_Level_[O.PORT_ADORESS := 16#2FB¥;

constant Low_Level _I0.PORT_ADDRESS := 16#2FC#;

: constant Low_Level_IO.PORT_ADDRESS := 16#2FD#;

: congtant Low_Level IO.PORT_ADDRESS := 16#20#;
: constant Low_Level !O.PORT_ADDRESS := 16#21#;

: constant := 16#42#4:

timer_control_addr : constant := 16#43#;

end HW_Config;

Distributed Issues Final Report

--% UNIT: Interrupt_Control Package Spec. and Body.

--X Effects: Provides control over interrupt flags.

--X Modifies: No global data is modified.

--%X Requires: No initialization is required.

--%X Raises: No explicitly raised exceptions are propagated.
--% Engineer: M. Sperry.

--| PACKAGE SPEC : Interrupt_Control

|

--| The purpose of the Interrupt_Control package is to provide Ada level
--| semantics for disabling and enabling interrupts on the 80X86 family of
--| processors. Also for clearing the direction flag because of an RTE bug

--| which does not always clear it.

|

-- Modifications Log

-- 88-11-20 : MPS => Original created.

with Machine_Code;
use Machine_Code;
pragma ELABORATE(Machine_Code);

package Interrupt_Control is
pragma SUPPRESS(Elaboration_Check);

procedure Disable;
pragma INLINE(Disable);
procedure Enable;
pragma INLINE(Enable);

procedure Clear_Direction_flag;
pragma INLINE(Clear_Direction_Flag);

end [nterrupt_Control;

--| PACKAGE BODY : Interrupt_Controt

|

--| Interrupt_Control is implemented with machine code statments.
--| suppression of the elaboration check is used to make the inlining of

--| these machine instructions as short as possible.

package body Interrupt_Control is

procedure Disable is
begin

MACHINE_INSTRUCTION’ (none,m_CL1);
end Disable;

procedure Enable is
begin

MACHINE_INSTRUCTION’ (none,m_ST1);
end Enable;

procedure Clear_Direction_Flag is
begin

MACHINE _INSTRUCTION' (none,m_CLD);
end Clear_Direction_flag;

end Interrupt_Control;

Distributed Issues Final Report

Distributed Issues Final Report

==% UNIT: Machine_Dependent Package Spec. -
--% Effects: Provides machine dependent operations for enhanced speed. --
--% Modifies: No global data is modified. --
--% Requires: Graphics mode, and initialization of timer channel two. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: M. Sperry. --

PACKAGE SPEC : Machine_Dependent

|
f
I
| Package Machine_Dependent contains machine code statements to perform
| tow level graphics functions, including an interface to the BIOS routines
--| found on the EGA (for text processing). Note that these instructions
| are inlined to enhance speed.

| Also implemented are routines which perform fixed point multiplications

| and divisions in machine code for speed enhancements.

| And, a procedure which returns the value in the channel two counter.

!

-- Modifications Log

-- 88-11-04 : MPS => Original created.

-- 89-08-24 : MPS => Specifications for fixed math routines incorporated.
-- 89-11-21 : MPS => Next_Random created.

with Machine_Code;

with Graphics;

with Types;

use Machine_Code;

pragma ELABORATE(Machine_Code);

package Machine_Dependent is

start_countdown : constant := 16#B2#; -- mode 2, channel 2
max_timer_value : constant := 256; -- channel 2 LSB divisor

procedure Put_Pixel(ABS_X, ABS_Y : Types.COORDINATE;
COLOR : Graphics.COLOR_TYPE);
pragma INLINE(Put_Pixel);

procedure Write_Mode O;
pragma [NLINE(Write_Mode 0);

-- Provide a mechanism to catl ROM located routine to initialize screen

procedure Int10(BIOS_FUNCTION : Types.WORD;-- spec to BIOS graphics call

-94-

Distributed Issues Final Report

PARAM_1 : Types.WORD;
PARAM_2 : Types.WORD)Y;
pragma INTERFACE(ASM86, Int10);
pragma INTERFACE_SPELLING(Int10, “"D1B10S?GRAPHICSCALL");

procedure Write_Mode_ 2;
pragma INLINE(Write_Mode_2);

procedure Long_Long Mul (LEFT,RIGHT : Types.LONG_FIXED;
RESULT : out Types.LONG_FIXED);
pragma INLINE(Long_Long_Mul);

procedure Long_Long Div(LEFT,RIGHT : Types.LONG_FIXED;
RESULT : out Types.LONG_FIXED);
pragma INLINE(Long_tong_Div);

procedure Long_Word Div(LEFT : Types.LONG_FIXED;
RIGHT : Types.WORD;
RESULT : out Types.LONG_FIXED);
pragma INLINE(Long_Word _Div);

procedure Meters_Meters _Div(LEFT,RIGHT : Types.METERS;
RESULT : out Types.METERS);
pragma INLINE(Meters_Meters Div);

procedure Meters_Word Div(LEFT : Types.METERS;
RIGHT : Types.WORD;
RESULT : out Types.METERS);
pragma INLINE(Meters_word Div);

procedure Meters Meters Mul(LEFT,RIGHT : Types.METERS;
RESULT : out Types.METERS);
pragma INLINE(Meters_Meters_Mul);

procedure Rate_Rate_Mul (LEFT,RIGHT : Types.RATE_TYPE;
RESULT : out Types.RATE_TYPE);
pragma INLINE(Rate_Rate Mul);

procedure Rate_Rate_Div(LEFT,RIGHT : Types.RATE_TYPE;
RESULT : out Types.RATE_TYPE);
pragma INLINE(Rate_Rate Div);

procedure Rate_Word Oiv(LEFT : Types.RATE_TYPE;
RIGHT : Types.WORD;
RESULT : out Types.RATE_TYPE);
pragma [NLINE(Rate Word Div);

procedure Long_Rate Div(LEFT : Types.LONG_FIXED;
RIGHT : Types.RATE_TYPE;
RESULT : out Types.LONG_FIXED);
pragma INLINE(Long_Rate Div);

-95-

Distributed Issues Final Report

procedure Rate_Long_Div(LEFT : Types.RATE_TYPE;
RIGHT : Types.LONG_FIXED;
RESULT : out Types.RATE_TYPE);
pragma INLINE(Rate_Long Div);

procedure Rate_Long_Long_Mul(LEFT : Types.RATE_TYPE;
RIGHT : Types.LONG_FIXED;
RESULT : out Types.LONG_FIXED);
pragma INLINE(Rate_Long_Long _Mul);

procedure Rate_Long_Rate Mul(LEFT : Types.RATE_TYPE;
RIGHT : Types.LONG_FIXED;
RESULT : out Types.RATE_TYPE);
pragma INLINE(Rate_Long_Rate Mul);

procedure Next_Random(CHANNEL TWO_VALUE : out Types.WORD_INDEX);
pragma [NLINE(Next_Random);

end Machine_Dependent;

-96-

Distributed Issues Final Report

--% UNIT: Machine_Dependent Package Body. --
--% Effects: Provides graphics machine dependencies. --
--% Modifies: No global data is modified. -
--X Requires: No initialization is required (other than graphics mode). --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: M. Sperry. --

--| PACKAGE BODY : Machine_Dependent

-

--| A package which makes use of the functionality of the BIOS routines
--| found in an EGA card to perform some graphics processing. Note that
--| some register level EGA programming is performed.

--| Also, the timer chip channel two functions are utilized to generate
--| pseudo random numbers.

|

-- Modifications Log

-- 88-08-25 : MPS => Original created.
-- 89-08-24 : MPS => Incorporated fixed math routine bodies for speed.
-- 89-11-28 : MPS => developed Next_Random procedure.

with HW_Config;

package body Machine_Dependent is

hi_res_graphics : constant := 16#10#; -- graphics mode

set_cursor : constant := 16#0200#; -- set cursor function
page_zero : constant := 16#00¥; -- set cursor to active page
write_function : constant := 16#0E#;

index_register : constant := 16#3CE#; -- port address
access_register : constant := 16#3CF#; -- port address

mode_register : constant := 5
write_mode 2 val : constant := 2
write_mode 0_val : constant := 0

-- index register 5

“s ws ws

procedure Put_Pixel(ABS_X, ABS_Y : Types.COORDINATE;
COLOR : Graphics.COLOR_TYPE) is

-

--| SUBPROGRAM 80DY : Machine_Dependent.Put_Pixel

-

-~ An assembly level procedure (for enhanced speed) to place a dot on the EGA
--| screen. Write mode two is used here (again, for enhanced speed). It is

--| important to note that this routine could be called up to 1235 times per

97

Distributed Issues Final Report

--{ interval.

begin

-- The first thing to do is find out which bit must be turned on. This is
-- done by taking SHR(80h, ABS_X mod 8). The bit ordering goes from 7 -> 0.

MACHINE_INSTRUCTION’(register_register, m_MOV, CX, CX); -- defeat compiler bug

MACHINE_INSTRUCTION’(register_immediate, m_MOV, DX, 16#3CE#); -- select bit
MACHINE_INSTRUCTION’(register_immediate, m_MOV, AL, 8); -- mask register
MACHINE_INSTRUCTION!(register_register, m_OUT, DX, AL); -- in graphics chip

-- Determine which bit must be turned on. This is
-- done by taking SHR(80h, ABS_X rem 8), reversing the bit ordering.

MACHINE_INSTRUCTION’(register_system_address. m_MOV, CX, ABS_X'address); --X

MACHINE_INSTRUCTION’(register_register, m_MOV, BX, CX); -- make copy of X
MACHINE_INSTRUCTION’(register_immediate, m_AND, CL, 7); -- mask for bit #
MACHINE_INSTRUCTION’(register_immediate, m_MOV, AL, 16#80#); -- most significant bit is
MACHINE_INSTRUCTION’ (register_register, m_SHR, AL, CL); -- bit zero, do bit reversai.

-- AL now holds the bit mask. Now give it to the bit mask register located
-- at 16¥3CF#4.

MACHINE_INSTRUCTION’ (register, m_INC, DX); -- increment port address to 3CF
MACHINE_INSTRUCTION'(register_register, m_OUT, DX, AL);

- Now, latch the byte of graphics memory. The byte to latch

- is defined as (ABS_Y * 80) + (ABS_X / 8). Then, when giving

- it back, place the color in AL. Note that only four bits of the color are
- significant and that the color placed in AL is not actually a color, but a
- palette register selection (from 0 to 15). The color in the palette

- register is the color displayed.-16#6000# is loaded (= AOOOH)

- to point to the EGA graphics page zero memory address.

MACHINE_INSTRUCTION'(register_system_address, m_MOvV, AX, ABS_Y’address);--Y
MACHINE_INSTRUCTION’(register_immediate, m_MOV, CX, 80); -- bytes/line

MACHINE _INSTRUCTION'(register, m_MUL, CX); -- ABS_Y * 80 in AX
MACHINE_INSTRUCTION’(register_immediate, m_MOV, CL, 3); -- Shift Count
MACHINE_INSTRUCTION’(register_register, m_SHR, BX, CL); -- ABS_X / 8 in BX
MACHINE_INSTRUCTION’(register_register, m_ADD, BX, AX); -- BX is offset

MACHINE _INSTRUCTION' (register_immediate, m_MOV, AX, -16#6000#); -- base of RAM
MACHINE _INSTRUCTION’(register_register, m_MOV, ES, AX);

-- Latch the palette selection. Note that the contents of AL upon return are
-- meaningless, and that the color is latched internally to the EGA’'s four bit

-- planes.

-98-

1

Distributed Issues Final Report

-- mov AL ,ES: {BX]
MACHINE_INSTRUCTION’ (register_address, m_MOV, AL, ES, BX, nil, SCALE_1, 0);
MACHINE_INSTRUCTION’ (register_system_address, m_MOV, AX, COLOR’address);

-- Finally, give the palette selection (color) to the four bit planes.
-- mov ES: [BX],AL
MACHINE_INSTRUCTION’ (address_register, m_MOV, ES, BX, nil, SCALE_1, 0, AL);

end Put_Pixel;

procedure Write_Mode 0 is

-

--| SUBPROGRAM BODY : Machine_Dependent.Write_Mode 0

ol

--] A procedure used to change the write mode of the screen to mode 0,
--| for text writing. This procedure is called before writing any text.

begin
MACHINE_INSTRUCTION’ (register_immediate, m_MOV, DX, index_register);
MACHINE_INSTRUCTION’(register_immediate, m_MOV, AL, mode_register);
MACHINE _INSTRUCTION’(register_register, m_OUT, DX, AL);
MACHINE_INSTRUCTION’ (register_immediate, m_MOV, DX, access_register);
MACHINE_INSTRUCTION’ (register_immediate, m_MOV, AL, write_mode_0_val);
MACHINE_INSTRUCTION’(register_register, m_OUT, DX, AL);

end Write_Mode 0;

procedure Write_Mode 2 is

|

--| SUBPRf “RAM BODY : Machine_Dependent.Write_Mode_2

-l

--| A procedure used to change the write mode of the screen to mode 2, which
--| facilitates the process of pixel plotting. This routine is called after
--| writing the necessary statistics titles, etc.

|

begin
MACHINE_INSTRUCTION' (register_immediate, m MOV, DX, index_register);
MACHINE_INSTRUCTION’ (register_immediate, m MOV, AL, mode_register);
MACHINE_INSTRUCTION’(register_register, m_OUT, DX, AL);
MACHINE_INSTRUCTION'(register_immediate, m_MOV, DX, access_register);
MACHINE _INSTRUCTION’(register_immediate, m_MOV, AL, write_mode_2_val);
MACHINE_INSTRUCTION’(register_register, m_OUT, DX, AL);

end Write_Mode_2;

--| SUBPROGRAM BODY : Machine_Dependent.fixed Math routines
|

-99.

Distributed Issues Final Report

--| These routines are written in 80386 32-bit code optimized for the

--| types on which they operate for maximum speed. They are treated as a

--| resource.

procedure Long_Long_Mul (LEFT,RIGHT : Types.LONG_FIXED;
RESULT : out Types.LONG_FIXED) is

begin
MACHINE_INSTRUCTION’ (none,m CLI1);
MACHINE _INSTRUCTION’(register_system_address,m_LEA,BX,LEFT'address);
MACHINE _INSTRUCTION’(immediate,m_DATAB, 16#66#);
MACHI«E_INSTRUCTION’(register_address,m_MOV,AX,SS,BX,nil,scale_1,0);
MACHINE_INSTRUCTION’ (immediate,m DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (system_address,m_IMUL,RIGHT!address);
MACHINE_INSTRUCTION’ (register_immediate,m_MOV,CX,6);
MACHINE_INSTRUCTI)N’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’(immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION/ (immediate,m DATAB, 16#0F#); -- SHRD EAX, EDX,CL
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#AD#);
MACHINE_INSTRUCTION’ (immediate, m_DATAB, 16400#);
MACHINE_INSTRUCTION’ (immediate, m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION' (system_address_register,m_MOV,RESULT'address,AX);
MACHINE_INSTRUCTION’ (none,m_STI1);

end Long_Long_Mul;

procedure Long_tong Div(LEFT,RIGHT : Types.LONG_FIXED;
RESULT : out Types.LONG_FIXED) is

begin
MACHINE_INSTRUCTION' (none,m_CLI);
MACHINE_INSTRUCTION'(register_system_address,m LEA,BX,LEFT'address);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION’(register_address,m_MOV,AX,SS,BX,nil,scale_1,0);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’(none,m_CWD); -- CDQ
MACHINE_INSTRUCTION’(register_immediate,m_MOV,CX,6);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#0F#); -- SHLD EDX,EAX,CL
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#AS#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#C2#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’ (register_register m_SHL,AX,CL);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (system_address,m_IDIV,RIGHT’address);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (system_address_register,m MOV, RESULT’address,AX);
MACHINE_INSTRUCTION' (none,m_ST1);

end Long_Long Div;

-100-

Distributed Issues Final Report

procedure Long_Word Div(LEFT ¢ Types.LONG_FIXED;
RIGHT : Types.WORD;
RESULT : out Types.LONG_FIXED) is
begin
MACHINE_INSTRUCTION’ (none,m_CL1);
MACHINE _INSTRUCTION’ (register_system Jddress,m_LEA,BX,RIGHT/address);
MACHINE_INSTRUCTION’(register_address,m_MOV,AX,SS,8X,nil, scale_1,0);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION’ (none,m_CBW); -- this instruction performs a C\WDE
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION'(register_register ,m_MOV, 3X, AX);
MACHINE _INSTRUCTION'(register_system_address,m_LEA,SI ,LEFT’/address);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’ (register_address,m_MOV,AX,SS,SI, nil,scale_1,0);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16466#);
MACHINE _INSTRUCTION’ (none,m_CWD); -- this instruction performs a CDQ
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION’ (register,m_IDIV,8X);
MACHINE_INSTRUCTION' (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’ (system_address_register,m_MOV,RESULT’address,AX);
MACHINE _INSTRUCTIOM’ (none,m_STI);
end Long_Word Div;

procedure Meters Meters Mul(LEFT,RIGHT : Types.METERS;
RESULT : out Types.METERS) is
begin
MACHINE_INSTRUCTION’(register_register, m_MOV, CX, CX); -- defeat compiler bug
MACHINE _INSTRUCTION’(register_system_address,m_MOV,AX,LEFT’address);
MACHINE_INSTRUCTION’ (system_address,m_IMUL,RIGHT’address);
MACHINE_INSTRUCTION’ (register_immediate,m_MOV,CX,3);
MACHINE_INSTRUCTION’(immediate,m_DATAB, 16#0F#); -- SHRD AX,DX,CL
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#AD¥#);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#00#);
MACHINE_INSTRUCTION’ (system_address_register,m_MOV,RESULT’address,AX);
end Meters_Meters_Mul;

procedure Meters_Meters Div(LEFT,RIGHT : Types.METERS;
RESULT : out Types.METERS) is
begin
MACHINE _INSTRUCTION'(register_register, m_MOV, CX, CX); -- defeat compiler bug
MACHINE_INSTRUCTION’ (register_system_address,m_MOV,AX,LEFT‘address);
MACHINE_INSTRUCTION’ (none,m_CWD);
MACHINE _INSTRUCTION’(register_immediate,m_MOV,CX,3);
MACHINE _INSTRUCTION’(register_register,m_SHL,AX,CL);
MACHINE _INSTRUCTION’ (system_address,m_IDIV,RIGHT'address);
MACHINE _INSTRUCTION’ (system_address_register,m_MOV,RESULT’address,AX);
end Meters_Meters Div;

procedure Meters Word Div(LEET : Types.METERS;

RIGHT : Types.WORD;
RESULT : out Types.METERS) is

-101-

Distributed Issues Final Report

begin
MACHINE_INSTRUCTION’(register_register, m_MOV, CX, CX); -- defeat compiler
MACHINE_INSTRUCTION’(register_system_address,m_MOV,AX, LEFT'address);
MACHINE_INSTRUCTION’ (none,m_CWD);
MACHINE_INSTRUCTION’(register_system_address,m_MOV,BX,RIGHT/address);
MACHINE_INSTRUCTION'(register ,m_IDIV,BX);
MACHINE_INSTRUCTION’ (system_address_register,m_MOV,RESULT’address,AX);

end Meters_Word Div;

procedure Rate_Rate_Mul (LEFT,RIGHT : Types.RATE_TYPE;
RESULT : out Types.RATE_TYPE) is

begin
MACHINE _INSTRUCTION’ (none,m_CLI);
MACHINE_INSTRUCTION' (register_system_address,m_LEA,BX,LEFT'address);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’ (register_address,m_MOV,AX,SS,BX,nil,scale_1,0);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (system_address,m_[IMUL,RIGHT’address);
MACHINE_INSTRUCTION’ (register_immediate,m_MOV,CX,16);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION' (immediate,m_DATAB, 16#0F#); -- SHRD EAX, EDX,CL
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#AD#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#00#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (system_address_register,m_MOV,RESULT’address, AX);
MACHINE_INSTRUCTION’ (none,m_STI1);

end Rate_Rate_Mul;

procedure Rate_Rate Div(LEFT ,RIGHT : Types.RATE_TYPE;
RESULT : out Types.RATE_TYPE) is

begin
MACHINE_INSTRUCTION’ (none,m_CL1);
MACHINE _INSTRUCTION’(register_system_address,m_LEA,BX,LEFT/address);
MACHINE_INSTRUCTION' (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’(register_address,m_MOV,AX,SS,BX,nil, scale_1,0);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE _INSTRUCTION’ (none,m_CWD); -- performs a CDQ
MACHINE _INSTRUCTION’ (register_immediate,m_MOV,CX,16);
MACHINE_INSTRUCTION’(immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#0F#); -- SHLD EDX, EAX,CL
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#A5#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#C2#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’ (register_register,m_SHL,AX,CL);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION' (system_address,m_IDIV,RIGHT'address);
MACHINE_INSTRUCTION' (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE _INSTRUCTION'(system_address_register,m_MOV,RESULT'address,AX);
MACHINE_INSTRUCTION’ (none,m _STI);

end Rate_Rate Div;

-102-

bug

Distributed Issues Final Report

procedure Rate_Word Div(LEFT : Types.RATE_TYPE;
RIGHT : Types.WORD;
RESULT : out Types.RATE_TYPE) is

begin
MACHINE_INSTRUCTION’ (none,m_CLI);
MACHINE_INSTRUCTION’(register_system_address,m_LEA,BX,RIGHT/address);
MACHINE_INSTRUCTION’ (register_address,m_MOV,AX,SS,BX,nil,scale_1,0);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION' (none,m_CBW); -- this instruction performs a CWDE
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION’(register_register,m_MOV,BX, AX);
MACHINE_INSTRUCTION’ (register_system_address,m_LEA,SI,LEFT’address);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’ (register_address,m_MOV,AX,SS,S!,nil,scale_1,0);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION’ (none,m_CWD); -- this instruction performs a CDQ
MACHINE _INSTRUCTION’ (immediate,m_DATARB, 16#66¥#);
MACHINE_INSTRUCTION'(register m_IDIV,BX);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’ (system_address_register,m_MOV,RESULT’address,AX);
MACHINE _INSTRUCTION’ (none,m_STI1);

end Rate_Word Div;

procedure Rate Long_Long_Mul(LEFT : Types.RATE_TYPE;
RIGHT : Types.LONG_FIXED;
RESULT : out Types.LONG_FIXED) is

begin
MACHINE _INSTRUCTION’ (none,m_CL1);
MACHINE _INSTRUCTION’ (register_system_address,m_LEA,BX, LEFT/address);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66¥#);
MACHINE_INSTRUCTION’(register_address,m_MOV,AX,SS,BX,nil,scale_1,0);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (system_address,m_IMUL ,RIGHT/address);
MACHINE_INSTRUCTION'(register_immediate,m_MOV,CX,16);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#0F#); -- SHRD EAX,EDX,CL
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#AD#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#400#) ;
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (system_address_register,m_MOV,RESULT'address,AX);
MACHINE _INSTRUCTION' (none,m_STI1);

end Rate_Long_Long_Mul;

procedure Rate_Long _Rate Mul(LEFT : Types.RATE_TYPE;
RIGHT : Types.LONG_FIXED;
RESULT : out Types.RATE_TYPE) is
begin
MACHINE _INSTRUCTION’ (none,m_CL1);

-103-

Distributed Issues Final Report

MACHINE _INSTRUCTION’ (register_system_address,m_LEA,BX,LEFT’address);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION’ (register_address,m_MOV,AX,SS,BX,nil,scale_1,0);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE _INSTRUCTION’ (system_address,m_IMUL,RIGHT’address);
MACHINE_INSTRUCTION’(register_immediate,m_MOV,CX,6);
MACHINE _INSTRUCTION' (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION'(immediate,m_DATAB, 16#0F#); -- SHRD EAX, EDX,CL
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#AD#);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#00#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE _INSTRUCTION' (system_address_register,m_MOV RESULT'address,AX);
MACHINE _INSTRUCTION’ (none,m_ST1);

end Rate_Long_Rate_Mul;

procedure tong Rate Div(LEFT : Types.LONG_FIXED;
RIGHT : Types.RATE_TYPE;
RESULT : out Types.LONG_FIXED) is

begin
MACHINE_INSTRUCTION (none,m_CLI);
MACHINE _INSTRUCTION’(register_system_address,m_LEA,BX, LEFT/address);
MACHINE _INSTRUCTION’(immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION'(register_address,m_MOV, AX,SS,BX, nil,scale_1,0);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (none,m_CWD); -- performs a CDQ
MACHINE_INSTRUCTION’ (register_immediate,m_MOV,CX,16);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#0F#); -- SHLD EDX,EAX,CL
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#AS#);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#C2#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE _INSTRUCTION’(register_register,m_SHL,AX,CL);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION/ (system_address,m_IDIV,RIGHT’address);
MACHINE _INSTRUCTION' (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION' (system_address_register,m_MOV,RESULT'address,AX);
MACHINE _INSTRUCTION’ (none,m_STI);

end Long_Rate Div;

procedure Rate_Long Div(LEFT : Types.RATE_TYPE;
RIGHT : Types.LONG_FIXED;
RESULT : out Types.RATE_TYPE) is
begin
MACHINE_INSTRUCTION’ (none,m_CLI);
MACHINE_INSTRUCTION’(register_system_address,m_LEA,BX,LEFT'address);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#);
MACHINE_INSTRUCTION’(reqgister_address,m_MOV,AX,SS,BX,nil,scale_1,0);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (none,m_CWD); -- performs a CDQ
MACHINE_INSTRUCTION’(register_immediate,m_MOV,CX,6);
MACHINE_INSTRUCTION' (immediate,m_DATAB, 16#66#); -- 32 bit override

-104-

Distributed Issues Final Report

MACHINE_INSTRUCTION’ (inmediate,m_DATAB, 16#0F#); -- SHLD EDX,EAX,CL
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#A5#);
MACHINE_INSTRUCTION’ (immediate,m_DATAB, 16#C2#);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16%66#);
MACHINE _INSTRUCTION’(register_register, m_SHL,AX,CL);
MACHINE _INSTRUCTION’ (immediate,m_DATAB, 16#66#%);
MACHINE _INSTRUCTION’ (system_address,m_IDIV,RIGHT'address);
MACHINE_INSTRUCTION’(immediate,m_DATAB, 16#66#); -- 32 bit override
MACHINE_INSTRUCTION’ (system_address_register,m_MOV,RESULT’address,AX);
MACHINE _INSTRUCTION’ (none,m_STI);

end Rate_Long Div;

procedure Next_Random(CHANNEL_TWO_VALUE : out Types.WORD_INDEX) is

-

--| SUBPROGRAM BODY : Machine_Dependent.Next_Random

-l

--} This function returns the value of the number at the address of the

--| channel two counter. It is assumed that the initialization of that channel
--| is previously performed. Therfore it returns a value between 0 and 255.

begin
MACHINE _INSTRUCTION’ (register_register, m_MOV, CX, CX); -- defeat compiler bug
MACHINE_INSTRUCTION' (register_immediate,m_MOV,DX,HW_Config.counter_two_addr);
MACHINE_INSTRUCTION' (register_register,m_IN,AL,DX);
MACHINE_INSTRUCTION’ (register_register,m_XOR, AH, AH);
MACHINE_INSTRUCTION' (system_address_register,m_MOV,CHANNEL_TWO_VALUE'address,

AX);
end Next_Random;

procedure Initialize_Timer_Two is

-

--| SUBPROGRAM BOOY : Machine_Dependent.lnitialize_Timer_Two

|

== A procedure used to start the channel 2 counter counting down from
--| max_timer_value to zero over and over to generate numbers.

begin

MACHINE _INSTRUCTION’ (register_immediate,m_MOV,DX,
HW_Config.timer_control_addr);

MACHINE_INSTRUCTION’ (register_immediate,m_MOV,AX,start_countdown);
MACHINE_INSTRUCTION’ (register_register, m_OUT, DX, AL);
MACHINE_INSTRUCTION’ (register_immediate,m_MOV,DX,HW_Config.counter_two_addr);
MACHINE_INSTRUCTION' (register_immediate,m_MOV,AX max_timer_value);
MACHINE_INSTRUCTION’(register_register, m_OUT, DX, AL);

-- The first out byte was the LSB. Now take care of MSB.

-105-

Distributed Issues Final Report

MACHINE_INSTRUCTION'(register_immediate,m_MOV,DX, HW_Config.counter_two_addr);
MACHINE_INSTRUCTION’(register_immediate,m_MOV, AX,max_timer_value);
MACHINE_INSTRUCTION’(register_register, m_OUT, DX, AL);

end Initialize_Timer_Two;

pragma INLINE(Initialize_Timer_Two);

begin

Initialize_Timer_Two;
end Machine_Dependent;

-106-

Distributed Issues Final Report

--% UNIT: Math Package Spec. --
--% Effects: Compute various functions: Tan, Arc Tan, and Sqrt. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. .-
--X Engineer: Various. --

PACKAGE SPEC : Math

!

I

I

| Math is responsible for implementing the necessary math functions of

| the BDS. Some of the transcedental functions are approximations using
--| table look-ups. The fixed point routines which perform basic multiply

| and divide operations are made visible to replace the runtime supplied

| routines which are too general (and thus too slow; for the BDS’s needs.

| The Get_Random Num function uses the channel two timer to return a

| number from 0 to the limit specified.

I

-- Modifications Log

-- 88-10-09 : TEG => Original created.

-- 89-08-24 : MPS => Fixed point routines were made visible.

-- 89-09-11 : MPS => Sin,Cos added from intern code.

-- 89-11-08 : MPS => General Power routine added.

-- 89-11-08 : MPS => Arcsin routine added.

-- 89-11-08 : LJG => Arctan routine was made more precise.

-- 89-11-20 : MPS => Get_Random Num routine moved from Targ_Sup to Math.

with Types;

package Math is

function "“*"(LEFT,RIGHT : Types.LONG_FIXED) return Types.LONG_FIXED;
--pragma INLINE("*"),

function "/"(LEFT ,RIGHT : Types.LONG_FIXED) return Types.LONG_FIXED;
--pragma INLINE("/");

function “/"(LEFT : Types.LONG_FIXED;
RIGHT : Types.WORD) return Types.LONG_FIXED;
--pragma INLINEC"/");

function "**(LEFT,RIGHT : Types.METERS) return Types.METERS;
--pragma INLINE("**);

function “/“(LEFT,RIGHT : Types.METERS) return Types.METERS;

-107-

--pragma INLINE("/");

function “/“(LEFT

RIGHT
--pragma INLINE("/");

Distributed Issues Final Report

Types.METERS;
Types.WORD) return Types.METERS;

function “w“(LEFT,RIGHT : Types.RATE_TYPE) return Types.RATE_TYPE;
--pragma INLINE(w*®);

function "/"(LEFT,RIGHT : Types.RATE_TYPE) return Types.RATE_TYPE;
--pragma INLINE("/");

function "/"(LEFY

RIGHT :
--pragma INLINE("/");

function “*“(LEFT

RIGHT
--pragma INLINE("*");

function "*"(LEFT

Types.RATE_TYPE;
Types.WORD) return Types.RATE_TYPE;

: Types.RATE_TYPE;

Types.LONG_fIXED) return Types.RATE_TYPE;

Types.RATE_TYPE;

RIGHT : Types.LONG_FIXED) return Types.LONG_FIXED;
--pragma INLINE("*");

function "“/Y(LEFT

RIGHT
--pragma INLINE("/");

function “/“(LEFT

RIGHT
--pragma INLINE("/");

Types.LONG_FIXED;
Types.RATE_TYPE) return Types.(ONG_FIXED;

: Types.RATE_TYPE;

Types.LONG_FIXED) return Types.RATE_TYPE;

function Power (BASE, RAISED_TO : Types.LONG_FIXED) return Types.LONG_FIXED;

function Sin (ANGLE

function Cos (ANGLE

function Tan (ANGLE :

Types.BAM) return Types.LONG_FIXED;

Types.BAM) return Types.LONG_FIXED;

Types.BAM) return Types.LONG_FIXED;

function Arcsin (THETA : Types.LONG_FIXED) return Types.LONG_FIXED;-- in degrees

function Arctan (Z_INPUT : Types.LONG_FIXED) return Types.BAM;

function Sqrt (X

function Sqrt (X

function Sgrt (X

in Types.METERS) return Types.METERS;

in Types.LONG_FIXED) return Types.LONG_FIXED;

in Types.RATE_TYPE) return Types.RATE_TYPE;

function Get_Random_Num (LIMIT : Types.WORD_INDEX) return Types.WORD_INDEX;

-108-

Distributed Issues Final Report

function Get_Random_Num (LIMIT : Types.METERS) return Types.METERS;

function Get_Random_Num (LIMIT : Types.LONG_FIXED) return Types.LONG_FIXED;

end Math;

-109-

Distributed Issues Final Report

--% UNIT: Math Package Body. --
--% Effects: Compute various functions: Tan, Arc Tan, and Sqrt. .-
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. -
--% Engineer: L. Griest. --

--| PACKAGE BODY : Math

al

--{ The math package contains the various math routines needed by the BDS.

--| Some of these routines contain simplifications to increase performance.

--| The routines (provided to do fixed point math) are all functions which allow
--| for overloading. Since machine code statements can only be procedures, a
--| call to the appropriate procedure is contained within each function. Since
--| each function and procedure is inlined, the end result should not generate
--| any overhead.

|

-- Modifications Log

-- 88-10-10 : TEG => Original created.

-- 89-08-24 : MPS => Bodies of fixed point functions created.

-- 89-11-08 : MPS => Arcsin and Power functions added.

-- 89-11-09 : LJG => Arctan function was given greater accuracy.
-- 89-11-20 : MPS => Get_Random_Num function created.

with Machine_Dependent;
with Time_Stamp;
pragma ELABORATE(Time_Stamp, Machine_Dependent);

package body Math is
use Types;

type FUNC_NAME is (SINE, COSINE);

subtype FUNC_RANGE is Types.WORD range 0..100;

type FUNC_TABLE is array (FUNC_RANGE,FUNC_NAME) of Types.LONG_FIXED;

TRIG_FUNC : FUNC_TABLE := ((0.000000,1.000000),(0.015625,1.000000),
(0.031250,1.000000), (0.046875,1.000000),
(0.062500, 1.000000),¢0.078125,1.000000),
(0.093750,1.000000),(0.109375, 1.000000),
(0.125000, 1.000000), (0.140625,1.000000),
(0.156250,1.000000),(0.171875,1.000000),
(0.187500,0.984375),(0.203125,0.984375),
(0.218750,0.984375),(0.234375,0.984375),
(0.250000,0.968750), (0.265625,0.968750),
(0.281250,0.968750),(0.296875,0.968750),
(0.312500,0.953125),(0.328125,0.953125),

-110-

TAN_TABLE

0.00000,
0.14054,
0.28675,
0.44523,
0.62487,
0.83910,
1.11061,
1.48256,

- .- 0 O O O O O

Distributed Issues Final Report

(0.343750,0.953125),(¢0.359375,0.937500),
(0.375000,0.937500),(0.390625,0.937500),
(0.406250,0.921875),(0.421875,0.921875),
(0.437500,0.906250),¢0.453125,0.906250),
(0.453125,0.890625),(0.468750,0.890625),
(0.484375,0.875000),(0.500000,0.875000),
(0.515625,0.859375),(0.531250,0.859375),
(0.546875,0.843750),(0.546875,0.843750),
(0.562500,0.828125),¢0.578125,0.828125),
(0.593750,0.812500),(0.609375,0.796875),
(0.625000,0.796875),(0.625000,0.781250),
(0.640625,0.765625),(0.656250,0.765625),
(0.671875,0.750000),(0.671875,0.734375),
(0.687500,0.718750),(¢0.703125,0.718750),
(0.703125,0.703125),(0.718750,0.703125),
(0.734375,0.687500), (0.750000,0.687500),
(0.750000,0.671875),(0.765625,0.656250),
(0.765625,0.640625),(0.781250,0.625000),
(0.796875,0.609375),(0.796875,0.593750),
(0.812500,0.593750),(0.812500,0.578125),
(0.828125,0.562500),(0.828125,0.546875),
(0.843750,0.531250),(0.843750,0.515625),
(0.859375,0.515625), (0.859375,0.500000),
(0.875000,0.484375),(0.875000,0.468750),
(0.890625,0.453125),(0.890625,0.437500),
(0.890625,0.437500), (0.906250,0.421875),
(0.921875,0.406250),(0.937500,0.390625),
(0.937500,0.375000),¢0.937500,0.359375),
(0.937500,0.343750),(0.953125,0.343750),
(0.953125,0.312500),(0.953125,0.296875),
(0.953125,0.296875),(0.953125,0.281250),
(0.968750,0.250000), (0.984375,0.250000),
(0.984375,0.234375),(0.984375,0.218750),
(0.984375,0.203125),(0.984375,0.187500),
(0.984375,0.171875),(1.000000,0.156250),
(1.000000,0.140625), (1.000000,0.125000),
(1.000000,0.109375), (1.000000,0.093750),
(1.000000,0.078125), (1.000000,0.062500),
(1.000000,0.031250),(1.000000,0.015625),
(1.000000,0.000000));

: array(Types.WORD range 0..90) of Types.LONG_FIXED :=

.01746,
.15838,
.30573,
.66631,
64961,
.86929,
.15037,
.53986,

- -0 O O O O O

.03492,
.17633,
.32492,
48773,
67451,
.90040,
19175,
.60033,

0.05241, 0.06993, 0.08749, 0.10510,
0.19438, 0.21256, 0.23087, 0.24933,
0.34433, 0.36397, 0.38386, 0.40403,
0.50953, 0.53171, 0.55431, 0.57735,
0.70021, 0.72654, 0.75356, 0.78129,
0.93252, 0.96569, 1.00000, 1.03553,
1.23490, 1.27994, 1.32704, 1.37638,
1.66428, 1.73205, 1.80405, 1.88073,

-111-

0.12278,
L.26795,
0.42447,
0.60086,
0.80978,
1.07237,
1.42815,
1.96261,

Distributed Issues Final Report

2.05030, 2.14451, 2.24604, 2.35585, 2.47509, 2.60509, 2.74748, 2.90421,
3.07768, 3.27085, 3.48741, 3.73205, 4.01078, 4.33148, 4.T0463, 5.14455,
5.67128, 6.31375, 7.11536, 8.14434, 9.51436, 11.43005, 14.30067, 19.08114,
28.63625, 57.28996, Types.sqrt_large_number);

function “*"(LEFT,RIGHT : Types.LONG_FIXED) return Types.LONG_FIXED is
RESULT : Types.LONG_FIXED;
MULTIPLICAND 1 : Types.LONG_FIXED := LEFT;
MULTIPLICAND 2 : Types.LONG_FIXED := RIGHT;

begin
Machine_Dependent.Long_tong_Mul (MULTIPLICAND _1,MULTIPLICAND_2,RESULT);
return RESULT;

end twn.

function "/"(LEFT,RIGHT : Types.LONG_FIXED) return Types.LONG_FIXED is
QUOTIENT : Types.LONG_FIXED;
DIVIDEND : Types.LONG_FIXED := LEFT;
DIVISOR : Types.LONG_FIXED := RIGHT;
begin
Machine_Dependent.Long_Long_0iv(DIVIDEND,DIVISOR,QUOTIENT);
return QUOTIENT;
end "/";

function "“/"(LEFT : Types.LONG_FIXED;
RIGHT : Types.WORD) return Types.LONG_FIXED is

QUOTIENT : Types.LONG_FIXED;
DIVIDEND : Types.LONG_FIXED :
DIVISOR : Types.WORD

begin
Machine_Dependent.Long_Word_Div(DIVIDEND,DIVISOR,QUOTIENT);
return QUOTIENT;

end "/%;

LEFT;
RIGHT;

function "“*"“(LEFT ,RIGHT : Types.METERS) return Types.METERS is
RESULT : Types.METERS;
MULTIPLICAND_1 : Types.METERS := LEFT;
MULTIPLICAND 2 : Types.METERS := RIGHT;
begin
Machine_Dependent.Meters_Meters_Mul (MULTIPLICAND_1,MULTIPLICAND_2,RESULT);
return RESULT;
em Hen ’-

function "/"(LEFT,RIGHT : Types.METERS) return Types.METERS is
QUOTIENT : Types.METERS;
DIVIDEND : Types.METERS := LEFT;
DIVISOR : Types.METERS := RIGHT;

begin
Machine_Dependent.Meters_Meters_Div(DIVIDEND ,DIVISOR,QUOTIENT);
return QUOTIENT;

em ll/";

-112-

Distributed Issues Final Report

function “/“(LEFT : Types.METERS;
RIGHT : Types.WORD) return Types.METERS is

QUOTIENT : Types.METERS;
DIVIDEND : Types.METERS := LEFT;
DIVISOR : Types.WORD := RIGHT;

begin
Machine_Dependent.Meters_Word_Div(DIVIDEND ,DIVISOR,QUOTIENT);
return QUCTIENT;

end "/,

function “*"(LEFT,RIGHT : Types.RATE_TYPE) return Types.RATE_TYPE is
RESULT ¢ Types.RATE_TYPE;
MULTIPLICAND_1 : Types.RATE_TYPE := LEFT;
MULTIPLICAND 2 : Types.RATE_TYPE := RIGHT;

begin
Machine_Dependent.Rate_Rate_Mul (MULTIPLICAND_1,MULTIPLICAND_2,RESULT);
return RESULT;

end wei.

function "/"(LEFT,RIGHT : Types.RATE_TYPE) return Types.RATE_TYPE is
QUOTIENT : Types.RATE_TYPE;
DIVIDEND : Types.RATE_TYPE := LEFT;
DIVISOR : Types.RATE_TYPE := RIGHT;
begin
Machine_Dependen:.Rate_Rate_Div(DIVIDEND,DIVISOR,QUOTIENT);
return QUOTIENT;
ew Il/ll:

function “/"(LEFT : Types.RATE_TYPE;
RIGHT : Types.WORD) return Types.RATE_TYPE is
QUOTIENT : Types.RATE_TYPE;
DIVIDEND : Types.RATE_TYPE := LEFT;
DIVISOR : Types.WORD := RIGHT;
begin
Machine_Dependent.Rate_Word Div(DIVIDEND,DIVISOR,QUOTIENT);
return QUOTIENT;
end "/

function “/"(LEFT : Types.LONG_FIXED;
RIGHT : Types.RATE_TYPE) return Types.LONG_FIXED is
QUOTIENT : Types.LONG_FIXED;
DIVIDEND : Types.LONG_FIXED := LEFT;
DIVISOR : Types.RATE_TYPE := RIGHT;
begin
Machine_Dependent.Long_Rate _Div(DIVIDEND,DIVISOR,QUOTIENT);
return QUOTIENT;
end n/n;

function “/"(LEFT : Types.RATE_TYPE;

RIGHT : Types.LONG_FIXED) return Types.RATE_TYPE is
QUOTIENT : Types.RATE_TYPE;

Distributed Issues Final Report

DIVIDEND : Types.RATE_TYPE := LEFT;
DIVISOR : Types.LONG_FIXED := RIGHT;

begin
Machine_Dependent.Rate_Long_Div(DIVIDEND,DIVISOR,QUOTIENT);
return QUOTIENT;

em II/II;

function “*"(LEFT : Types.RATE_TYPE;
RIGHT : Types.LONG_FIXED) return Types.LONG_FIXED is

RESULT : Types.LONG_FIXED;

MULTIPLICAND 1 : Types.RATE_TYPE := LEFT;

MULTIPLICAND_2 : Types.LONG_FIXED := RIGHT;
begin

Machine_Dependent.Rate_Long_tong_Mul(MULTIPLICAND_1,MULTIPLICAND_2,RESULT);
return RESULT;
ond u.u’.

function “*"(LEFT : Types.RATE_TYPE;
RIGHT : Types.LONG_FIXED) return Types.RATE_TYPE is
RESULT : Types.RATE_TYPE;
MULTIPLICAND_ 1 : Types.RATE_TYPE LEFT;
MULTIPLICAND 2 : Types.LONG_FIXED := RIGHKT;
begin
Hachine_Dependent.Rate_Long_Rate_Mul(MULTIPLlCAND_1,MULT[PL!CAND_Z,RESULT);
return RESULT;
end Wew,

function Power(BASE, RAISED_TO : Types.LONG_FIXED) return Types.LONG_FIXED is

RESULT : Types.LONG_FIXED := 1.0;
OLD_RESULT : Types.LONG_FIXED;
begin

for I in 1..Types.WORD(RAISED_TO) loop
OLD_RESULT := RESULT;
RESULT := RESULT * BASE;
if RESULT = OLD_RESULT then -- if no change, don’t waste time
exit;
end if;
end loop;
return RESULT;
end Power;

function Sin (ANGLE : Types.BAM) return Types.LONG_FIXED is

-
--| SUBPROGRAM BODY : Math.Sin

|

== Sin is a function which takes an angle in Binary Angle

--| Measurements and uses a table lookup to find the corresponding result.
--| 1t returns the sin of the ANGLE in the Types.LONG_FIXED type.

-114-

Distributed Issues Final Report

NEGAT : Types.WORD := 1;
ANGLEZ : Types.WORD := Types.WORD(ANGLE);
TEMP : Types.LONG_FIXED;

begin
if ANGLE2 < 0 then
ANGLE2 := abs(ANGLE2);
NEGAT = - 1;
end if;
if ANGLE2 > 16384 then
TEMP := TRIG_FUNC(Types.WORD((32767 - ANGLE2)/163),SINE);
return TEMP * Types.LONG_FIXED(NEGAT);
else
TEMP := TRIG_FUNC(Types.WORD(ANGLE2/163),SINE);
return TEMP * Types.LONG_FIXED(NEGAT);
end if;
end Sin;

function Cos (ANGLE : Types.BAM) return Types.LONG_FIXED is

-

--| SUBPRCGRAM BODY : Math.Cos

-

-~ Cos is a function which takes an angle in Binary Angle

--| Measurements and uses a table lookup to find the corresponding result.
--| The result is returned in the Types.LONG_FIXED type.

-l
ANGLE2 : Types.WORD := Types.WORD(ANGLE);

begin
ANGLE2 := abs(ANGLE2);
if ANGLE2 > 16384 then
return (-1) * TRIG . UNC(Types.WORD((32767-ANGLE2)/163),COSINE);
else
return TRIG_FUNC(Types.WORD(Angle2/163),COSINE);
end if;
end Cos;

function Tan (ANGLE : Types.BAM) return Types.LONG_FIXED is

-

--| SUBPROGRAM BODY : Math.Tan

-

- Tan is the tangent function which takes an angle in Binary Angle

--| Measurements and uses a table lerokup to find the corresponding result.

TANGENT : Types.LONG_FIXED;
THETA : Types.WORD;

-115-

Distributed Issues Final Report

begin
Time_Stamp.Log(0048); --$TP(0048) Math.Tan start
THETA := Types.WORD(ANGLE/182); -- approx. 182 bams per degree

if THETA >= -90 and THETA <= 90 then
if THETA >= 0 then
TANGENT := TAN_TABLE(THETA);
else
TANGENT := -TAN_TABLE(-THETA);
end if;
elsif THETA < -90 then
TANGENT := TAN_TABLE(THETA + 180);

else
TANGENT := -TAN_TABLE(180-THETA);
end if;
Time_Stamp.Log(0049); --$TP(0049) Math.Tan end
return TANGENT;
end Tan;

function Sgrt(X : in Types.METERS) return Types.METERS is

-l

--| SUBPROGRAM BODY : Math.Sqrt

-l

-~ Sqrt returns the square root of a number. This routine will exit when
--| the approximation of the square is close to the previous result. This
--| prevents unneeded tooping for accuracy.

use Types; -- import operators
F : Types.METERS := X;
Y : Types.METERS := 1.0;
OLD_Y : Types.METERS := Y;
begin
Time_Stamp.Log(0050); --$TP(0050) Math.Sqrt start (METERS)
if X = 0.0 then
return F;
end if;
for 1 in 1..15 loop
exit when Y = 0.0;
Y 1= (Y + F/Y) / Types.WORD(2);
if Y = OLD_Y then
exit;
end if;
OLD_Y := Y;
end loop;
Time_Stamp.Log(0051); --$TP(0051) Math.Sqrt end (METERS)
return Y;
andd SqQrt;

function Sgrt(X : in Types.LONG_FIXED) return Types.LONG_FIXED is

-116-

Distributed Issues Final Report

use Types; -- import operators
F : Types.LONG_FIXED := X;
Y : Types.LONG_FIXED := 1.0;
OLD_Y : Types.LONG_FIXED := Y;
begin
Time_Stamp.Log(0052); --$TP(0052) Math.sqrt start (LONG_FIXED)
if X = 0.0 then
return F;
end if;
for I in 1..15 loop
exit when Y = 0.0;
Y 2= (Y + F/Y) / Types.WORD(2);
if Y = OLD_Y then
exit;
end if;
OLD_Y :=Y;
end loop;
Time_Stamp.Log(0053); --$TP(0053) Math.Sqrt end (LONG_FIXED)
return Y;
exception
when NUMERIC_ERROR => Y := OLD_Y;
return Y;
end Sqrt;

-- for RATE TYPE
function Sqrt(X : in Types.RATE_TYPE) return Types.RATE_TYPE is
use Types; -- import operators
F : Types.RATE_TYPE := X;
Y : Types.RATE_TYPE := 1.0;
OLD_Y : Types.RATE_TYPE :=Y;
begin
Time_Stamp.Log(0116); --$TP(0116) Math.Sgrt start (RATE_TYPE)
if X = 0.0 then
return f;
end if;
for I in 1..15 loop
exit when Y = 0.0;
Y := (Y +F/Y) / Types.WORD(2);
if Y = OLD_Y then
exit;
end if;
oLD_Y :=Y;
end loop;
Time_Stamp.Log(0117); --$TP(0117) Math.Sqrt end (RATE_TYPE)
return Y;
exception
when NUMERIC_ERROR => Y := OLD_Y;
return Y;
end Sqrt;

-117-

Distributed Issues Final Report

SUBPROGRAM BODY : Math.Arcsin
Arcsin uses an appoximation method of series expansion in order to achieve
constants are not fully divided out beforehand to increase accuracy, but

to improve speed, the constants could be divided beforehand and constants

|
I
I
I
--| it’s results. Simple constants are named to improve readability. The
|
!
| used to multiply the TERMs.
I

function Arcsin(THETA : Types.LONG_FIXED) return Types.LONG_FIXED is

rad_to_deg : constant Types.LONG_FIXED := 57.296875; -- 180 / pi
three : constant Types.LONG_FIXED := 3.0;
six : constant Types.LONG_FIXED := 6.0;
five : constant Types.LONG_FIXED := 5.0;
seven : constant Types.LONG_FIXED := 7.0;
fifteen : constant Types.LONG_FIXED := 15.0;
forty : constant Types.LONG_FIXED := 40.0;

three_thirty_six : constant Types.LONG_FIXED := 336.0;

TERM1 : Types.LONG_FIXED;

TERMZ : Types.LONG_FIXED;

TERM3 : Types.LONG_FIXED;

TERM4 : Types.LONG_FIXED;

RESULT : Types.LONG_FIXED;
begin

TERM1 := THETA;
TERM2 := Power(THETA, three);
TERM2 := TERM2 / six;
TERM3 := three * Power(THETA,five);
TERM3 := TERM3 / forty;
TERM4 := fifteen * Power(THETA, seven);
TERMG := TERM4 / three_thirty_six;
RESULT := (TERM1 + TERM2 + TERM3 + TERM4) * rad_to_deg;
return RESULT;
end Arcsin;

function Arctan(Z_INPUT : Types.LONG_FIXED) return Types.BAM is

-

-~ | SUBPROGRAM BODY : Math.Arctan

-l

--| A function used to return an approximation of the arctangent function.

--| Using the Taylor series expansion:

--| arctan z = z - (2**3/3) + (2**5/5) - (2**7/7) + ... (|z|<= 1 and z**2 /= -1)
--| carried out for two terms (initially).

Z_CUBED : Types.LONG_FIXED;

-118-

I - =N N S T B A Sh BN BN BN BN BN N BE B =EE

Distributed Issues Final Report

QUOTIENT : Types.LONG_FIXED;
ARCTAN_Z : Types.LONG_FIXED;
CONV_FACTOR : constant Types.LONG_FIXED := 10430.38; --Radians to BAMS
TEMP : Types.LONG_FIXED;

ARCTAN_Z _BAMS : Types.BAM;

begin
Z_CUBED := Z_INPUT * Z_INPUT; --actually z**2
2Z_CUBED := Z_CUBED * Z_INPUT; ~-- 2**3

QUOTIENT := 2_CUBED / Types.WORD(3);
ARCTAN_Z := Z_INPUT - QUOTIENT;
TEMP := ARCTAN_Z * CONV_FACTOR;
ARCTAN_Z BAMS := Types.BAM(TEMP);
return ARCTAN_Z_BAMS;

end Arctan;

function Get_Random Num(LIMIT : Types.METERS) return Types.METERS is

SUBPROGRAM BODY : Math.Get_Random_Num

-
ol
-
--| This function returns a psuedo random number to the caller. It has
--| three forms returning three different types for the convenience of
--| Simulate.Sensor. The random number is received from the channel two
--| counter. Therefore the number returned from the

--| Machine_Dependent.Next_Random call is between 0 and Machine_Dependent
--| max_timer_value. This number is then multiplied by the parameter

--| LIMIT, and, returned in the type of LIMIT, is a random number from
-~} 0 to LIMIT.

VALUE : Types.RATE_TYPE;
TEMP : Types.WORD_INDEX;
begin
Machine_Dependent .Next_Random(TEMP);
VALUE := Types.RATE_TYPE(TEMP) / Types.WORD(
Machine_Dependent.max_timer_value);
VALUE := VALUE * Types.RATE_TYPE(LIMIT);
return Types.METERS(VALUE);
end Get_Random_Num;

function Get_Random_Num(LIMIT : Types.LONG_FIXED) return Types.LONG_FIXED is
VALUE : Types.RATE_TYPE;
TEMP : Types.WORD_INDEX;
begin
Machine_Dependent.Next_Random(TEMP);
VALUE := Types.RATE_TYPE(TEMP) / Types.WORD(
Machine_Dependent.max_timer_value);
VALUE := VALUE * LIMIT;
return Types.LONG_FIXED(VALUE);
end Get_Random_Num;

-119-

Distributed Issues Final Report

function Get_Random_Num(LIMIT : Types.WORD_INDEX) return Types.WORD_INDEX is
VALUE : Types.RATE_TYPE;
TEMP : Types.WORD_INDEX;
begir
Machine_Dependent .Next_Random(TEMP);
VALUE := Types.RATE_TYPE(TEMP) / Types.WORD(
Machine_Dependent.max_timer_value);
VALUE := VALUE * Types.RATE_TYPE(LIMIT);
return Types.WORD _INDEX(VALUE);
end Get_Random_Num;

end Math;

-120-

Distributed Issues Final Report

UNIT:
Effects:
Modifies:
Requires:
Raises:

Mouse Package Spec. .-
Provides graphics pointing device interrupt handling. --
Status Mode, and Mouse_Buffer X-Y positions are updated. --
Runtime initialization of interrupt vector. --
Task will terminate on MOUSE_ERROR. .-

Engineer: M. Sperry. .

PACKAGE SPEC : Mouse

l

|

|

| In addition to establishing communications with the mouse, a task is
| provided which handles the receive interrupt generated by the mouse at
|

I

I

|

com2.

time,

-- Modifications Log

This task has the pragma INTERRUPT_HANDLER and special restrictions
apply to it’s communication facilities in order to guarantee a good response

-- 88-09-30 : MPS => Original created.

with System;

package Mouse is

procedure lnitialize;

task Char_In is

pragma INTERRUPT_HANDLER;
entry REPORT;
for REPORT use at (16#83#,0);

-~ COM2 8250

end Char_In;

end Mouse;

-121-

serial port vector

Distributed Issues Final Report

--% UNIT: Mouse Package Body. --
--% Effects: Provides graphics pointing device interrupt handling. --
--X Modifies: Status Mode, and Mouse_Buffer X-Y positions are updated. --
--% Requires: Runtime initialization of interrupt vecter, --
--% Raises: Task will terminate on MOUSE_ERROR. --
--X Engineer: M. Sperry. --

PACKAGE BODY : Mouse
The Mouse package implements the routines needed for control of a

for 4800 baud, no parity, 7 data bits, and two stop bits. There is
also an interrupt entry task which takes data from the mouse and
if a complete report is generated, gives that data to the Mouse_Buffer

I
f
I
|
--| mouse. There is an initialization procedure which sets up the mouse
I
|
I
| task.
|

-- Modifications Log

-- 88-09-30 : MPS => Original created.

-- 89-08-08 : MPS => Made all references to hardware in one package.

-- 89-12-06 : TEG => Shut off mouse interrupts during init. Added support
-- for Restarting the system using RESETEMODE buttons.

with Types;

with Low_Level l0;

with Debug_l10;

with Mouse_Buffer;

with Mouse Data; -- provides constants and data structures
with Status;

with Interrupt_Control;

with Time_Stamp;

with HW_Config;

with Distrib;

use Low_Level_IO;

use Mouse_Data; -- visibility to "and" function

pragma ELABORATE(Low_Level !0, Debug_l!QO, Mouse_Buffer, Status, Time_Stamp);

package body Mouse is

DATA : Low_Level I0.BYTE; -- char from mouse

BUTTON_PUSHED : Mouse Data.BIT_FIELD; -- array representing keys

STATUS_BYTE : Mouse_Data.BIT_FIELD; -- represents status errors

PREV_BUTTON_PUSH : Mouse Data.BIT_FIELD := (others => FALSE); --previous buttons

MOUSE _INPUT : Mouse_Data.RAW_MOUSE_WORD := (0,0,0);-- transform to 12-bit
-122-

Distributed Issues Final Report

MOUSE_REPORT : Mouse _Data.SIGNED_MOUSE_WORD; -- transformation to signed
REPORT_COUNT : Types.WORD range 0..5 := O; -- count§ byte in report
CHANGE _REQUESTED : BOOLEAN := FALSE; -- rendezvous with status?
MOUSE_ERROR : EXCEPTION;

TEMP_X : Types.WORD; -- tocal copy of X motion
TEMP_Y : Types.WORD; -- local copy of Y motion

procedure [nitialize is

|
|
|
|
|
|
|
|
|
|
|
-]

SUBPROGRAM BODY : Mouse.lnitialize

Initialize sets up the mouse at 4800 baud, no parity, 7 data bits, and
two stop bits. The number of stop bits is insignificant. There should
only be two formats that the mouse can be in, either relative bit pad one
or Micrsoft Mouse. The default on power up for the mouse is MM at 4800.
The mouse must be commanded in the following order: BAUD (which is set to
default to 4800 so it is not necessary to reprogram it), # of reports/sec.,
and then format of the reports. The mouse used is a Logitech Serial Mouse
as described in hwconfig.as. The mouse is programmed with Relative Bit
Pad One format which has five bytes of data associated with it.

INTERRUPTS : Low_Level_I0.BYTE; -- for input of 8259 ints

RESPONSE : Low_Level _l10.BYTE; -- for mouse responses

TIME_OUT : INTEGER := 30000; -- time out for mouse response
begin

Disable receive interrupts

Send_Control(HW_Config.COM2_int_enable,Mouse_Data.specific_int_disable);
Receive_Control (HW_Config.COM2_status,RESPONSE); -- clean out junk in status
Receive_Control (HW_Config.COM2_data,RESPONSE); -- clean out junk in data
Send_Control (HW_Config.COM2_control ,Mouse _Data.access_baud);
Send_Control (HW_Config.COM2_data,Mouse_Data.host_baud); -- set BAUD = 4800

-- set COM2 serial parameters
Send Control(HW_Config.COM2_control ,Mouse_Data.host_format);
Send_Control (HW_Config.COM2_data,Mouse Data.acknowiedge); -- wakeup mouse
toop

Receive_Control(HW_Config.COM2_status,RESPONSE); -- wait for response
if RESPONSE = Mouse_Data.data_new then
Receive_Control (HW_Config.COM2_data,RESPONSE); -- clear out byte
exit;
else
TIME_OUT := TIME_OUT - 1;
end if;
if TIME_OUT = 0 then
exit;
end if;

end loop;
if TIME_OUT = 0 then

Debug_10.Put_Line("Unable to establish communications with mouse.");

-123-

Distributed Issues Final Report

end if;
Send_Contro.(H4W_Config.COM2_data,Mouse Data.mouse_char_speed);
delay 0.01; -- slow for mouse input buffer

Send_Control (HW_Config.COM2_data,Mouse_Data.mouse_format);
Send_Control (HW_Config.COM2_modem_control ,Mouse_Data.general_int_enable);
Send_Control(HW_Config.COM2_int_enable,Mouse_Data.specific_int_enable);
Receive_Control (HW_Config.pic_8259_mr, INTERRUPTS);

-- enable COM2 in PIC in line below
INTERRUPTS := Mouse_Data.Bits_to_8yte

(Mouse_Data.Byte_to_Bits(INTERRUPTS) and Mouse_Data.pic_and_mask);

Send_Controlt (HW_Config.pic_8259_mr, INTERRUPTS);

end

Initialize;

task body Char_In is

TASK BODY : Mouse.Char_In

One of the main tasks used to move the reticle around the battlefield
screen. The task rendezvous with the graphics task reporting positions
every 28 milliseconds, unless the middle button is pressed (MODE) changing
the mode to AUTOMATIC. In this event, the mouse simply waits for a change
to MANUAL, since automatic mode is controlled by the rocket task. The mouse
task will not rendezvous with the graphics task until set to MANUAL. When
in MANUAL mode, the task (upon completion of one report) will rendezvous
with the graphics task at high priority to report it’s position. It will
then change the status task’s shared variables if any need to be changed.

If one does, and the status task has completed it’s previous work and gone
to an accept state, then the mouse task wakes it up. Because the mouse

is programmed with Relative Bit Pad One format and needs five bytes of data
in order to complete its report, after the first byte has come in, it is
ontly 2 mitliseconds until the next byte comes in until five bytes have been
received. Then there is a gap of 18 milliseconds until the next byte will
be seen (assuming constant motion of the mouse). This is why there is

very little processing of data until the fifth byte. It is entirely possible
because the mouse is an asychronous device that up to three reports may be
generated and handled in one interval. This worst case must be accounted
for in timing considerations.

use Status; -- for visibility to #=t
use Types; -+ for visibility to "s»
begin

Loop

accept Report do
--$TP(0056) Mouse task start
Receive_Control (HW_Config.COM2_status,DATA); -- receive status
STATUS_BYTE := Mouse_Data.Byte_to_Bits(DATA);--check statusbyte for errors
if STATUS_BYTE(Mouse Data.overflow) or

-124-

Distributed Issues Final Report

STATUS_BYTE(Mouse_Data.framing) then

REPORT_COUNT := 0; -- start a new report
Receive_Control(HW_Config.COM2_data,DATA); -- clear out data port
else
Receive_Control (HW_Config.COM2_data,DATA); -- get valid data
if DATA > Mouse Data.sync_byte then -- check for new report
REPORT_COUNT := 1; -+ start of new report
end if;
end if;
case REPORT_COUNT is -- convert data to mouse X,Y
when 1 => -- or buttons.

BUTTON_PUSHED := Mouse Data.Byte_to_Bits(DATA);
REPORT_COUNT := REPORT_COUNT + 1;
when 2 =>
MOUSE_INPUT.LOW := Mouse_Data.Byte_to_Bité6(DATA);
REPORT _COUNT := REPORT_COUNT + 1;
when 3 =>
MOUSE_INPUT.HIGH := Mouse _Data.Byte_to_Bit6(DATA);
MOUSE _REPORT := Mouse_Data.Raw_to_Signed(MOUSE_INPUT);
TEMP_X := MOUSE_REPORT.LOW12;
REPORT_COUNT := REPORT_COUNT + 1;
when & =>
MOUSE_INPUT.LOW := Mouse_Data.Byte_to_Bit6(DATA);
REPORT_COUNT := REPORT_COUNT + 1;
when 5 =>
-- don’t move mouse if any buttons pushed.
if (not BUTTON_PUSHED(Mouse_Data.reset)) and -- guarantee only one -
(not BUTTON_PUSHED(Mouse _Data.mode)) and-- rendezvous per report

(not BUTTON_PUSHED(Mouse_Data.launch)) then -- (RTE bug) -
PREV_BUTTON_PUSH(Mouse Data.reset) := FALSE;
PREV_BUTTON_PUSH(Mouse_Data.mode) := FALSE;

PREV_BUTTON _PUSH(Mouse 0ata.launch) := FALSE;
MOUSE_INPUT .HIGH := Mouse Data.Byte_to_Bit&6(DATA);
MOUSE _REPORT := Mouse_Data.Raw_to_Signed(MOUSE_INPUT);
TEMP_Y := MOUSE_REPORT.LOW12;
if Status.MODE = Status.MANUAL then
MOUSE_BUFFER.MOUSE_X := TEMP_X;
MOUSE_BUFFER.MOUSE_Y := TEMP_Y;
--$TP(0057) Mouse rendezvous with Save start
select -- must be conditional to work in INTERRUPT_HANDLER
Mouse_Buffer.Save.Reticle_Motion;
--$TP(0058) Mouse rendezvous with Save end
else
nutl;
end select;
end if;
else

-- A BUTTON IS DEPRESSED. FIRST LOOK AT "“RESET" BUTTON

if BUTTON_PUSHED(Mouse Data.reset) and

-125-

Distributed Issues Final Report

not PREV_BUTTON_PUSH(Mouse Data.reset) then
for 1 in Status.RESET_STATUS_TYPE loop I
Status.STATUS_CONTROL(I).DATA := 0;
Status.STATUS_CONTROL(1).DISPLAYED := FALSE;
end loop; II
Status.REQ_COUNT := Status.REQ_COUNT + 1;
CHANGE_REQUESTED := TRUE;
PREV_BUTTON_PUSH(Mouse Data.reset) := TRUE; I
else
PREV_BUTTON_PUSH(Mouse_Data.reset) := FALSE;
end if; II

NOW LOOK AT MODE BUTTON... i
When the MODE button is pushed, check to see if the RESET button is
currently active. [f so, then do a system reset! I

if BUTTON_PUSHED(Mouse _Data.mode) then
if BUTTON_PUSHED(Mouse_Data.reset) then

Distrib.Restart; -- perform system shutdown
elsif not PREV_BUTTON_PUSH(Mouse_Data.mode) then
if Status.MODE = Status.MANUAL then -- Change mode
Status.MODE := Status.AUTOMATIC;
else
Status.MODE := Status.MANUAL;
end if;

Status.MODE_DISPLAYED := FALSE;
Status.REQ_COUNT := Status.REQ_COUNT + 1;
CHANGE_REQUESTED := TRUE;
PREV_BUTTON_PUSH(Mouse_Data.mode) := TRUE;
end if;
else
PREV_BUTTON_PUSH(Mouse_Data.mode) := FALSE;
end if;

FINALLY, LOOK AT LAUNCH BUTTON

if BUTTON_PUSHED(Mouse _Data.launch) and
not PREV_BUTTON_PUSH(Mouse_Data.launch) then
if Status.MODE = Status.MANUAL then
Mouse_Buffer .LAUNCH := TRUE;
Mouse Buffer NEW_ABS_X := Mouse_Buffer.OLO_ABS_X;
Mouse_Buffer.NEW_ABS_Y := Mouse_Buffer.OLD_ABS_Y;
end if;
PREV_BUTTON_PUSH(Mouse_Data.launch) := TRUE;
else
if not BUTTON_PUSHED(Mouse Data.launch) then
PREV_BUTTON_PUSH(Mouse_Data.launch) := FALSE;
end if;
end if;
if CHANGE_REQUESTED and then Status.REQ_COUNT = 1 then
--$TP(0059) Mouse rendezvous with Status start

-126-

select

Distributed Issues Final Report

Status.Update.Signatl;
--$TP(0060) Mouse rendezvous with Status end

else
null;
end select;
end if;
end if;

CHANGE_REQUESTED := FALSE;

REPORT_COUNT := 0;
when others => null;
end case;

Send_Control(HW_Config.pic_8259 ,Mouse_Data.spec_eoi); -- specific Eol

--$TP(0061) Mouse task end
end Report;
end loop;
end Char_In;

end Mouse;

-127-

Distributed Issues Final Report

--% UNIT: Mouse_Buffer Package Spec. --
--% Effects: Buffers mouse data input, translates it to pixel system. --
--% Modifies: No global data is modified (other than in own spec). --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: M. Sperry. --

PACKAGE SPEC : Mouse_Buffer
Package Mouse Buffer contains a task called Save which is responsible

task. The task then rendezvous with the display task to relocate the
reticle. The shared variables of the X and Y positions as well as the
taunch flag are contained here. The mode flag is contained in the

I
I
I
I
--| for saving reports of mouse movement via a rendezvous with an interrupt
I
I
I
| status package specification,
I

-- Modifications Log

-- 88-10-24 : MPS => Original created.

with Types;
with Config;

package Mouse_Buffer is

stack_size : constant := 118; -- in bytes

MOUSE_X : Types.WORD; -- for use with the Save task in Mouse_Buffer
MOUSE _Y : Types.WORD; -- for use with the Save task in Mouse_Buffer
LAUNCH : BOOLEAN := FALSE;

OLD_ABS X : Types.WORD; -- absolute X position of Reticle on Screen
OLD_ABS_Y : Types.WORD; .- " Y " " "

NEW_ABS X : Types.WORD; -- for use by ENGAGE (latched values by Mouse pkg)

NEW_ABS Y : Types.WORD;

task type Save_Type is
entry Reticle_Motion;
pragma PRIORITY(Config.save_priority);
end Save_Type;
for Save_Type’STORAGE_SIZE use INTEGER(Config.bytes_per _storage_unit *
stack_size);
Save : Save_Type; -- for saving motion of mouse to display

end Mouse_Buffer;

-128-

--%

Distributed Issues Final Report

UNIT: Mouse Buffer Package Body. --
Effects: Buffers mouse data input, transtates it to pixel system. --
Modifies: No global data is modified (other than in own spec). --

Requires: No initialization is required. .-
Raises: No explicitly raised exceptions are propagated. --
Engineer: M. Sperry. --

PACKAGE BODY : Mouse_Buffer

Package body Mouse_Buffer is responsible for the implementation of the
buffering between the mouse interrupt routine and the screen. Note that
checks are performed to be sure that the reticle is within the screen
defined by Config. Also, note that the Y coordinate is reversed because
the screen on the EGA runs (in the Y direction) from O to 349 starting
from the upper left and moving down, i.e., the mouse has Y direction as
positive moving up, and the EGA has Y positive moving down.

-- Modifications Log

-- 88-10-24 : MPS => Qriginal created.

with Shapes;

with Graphics;

with Config;

with Debug_lO;

with Interrupt_Control;

with Time_Stamp;

pragma ELABORATE(Debug_ [0, Graphics, [nterrupt _Control, Time_Stamp);

package body Mouse Buffer 1s
use Types; -- neeued for visibility to

task body Save_iype is

list_len : constant :

1.

'

left_Llimit : constant := Config.battlefield_screen_left;
right_Limit : constant := Config.battlefield_screen_right;

top_limit : constant :

Config.battlefield_screen_top;

bottom_Limit : constant := Config.battlefield_screen_bottom;

PRIORITY : Grapnics.PRIORITY_TYPE := Graphics.HIGH;
WORK_LIST : Graphics.MOVE_LIST_TYPE(list_len .. list_len);-- 1 item (reticle)

TEMP_X : Types.WORD;

-129-

Distributed Issues Final Report

TEMP_Y : Types.WORD;

begin

-+ Initial disptay of reticle
WORK_LIST(list_len).XY_OLD := (Config.battlefield_center_x, Config.batttefield _center_y);
WORK_LIST(list_len).XY_NEW := (Config.battlefield_center_x, Config.battlefield_center_y);
WORK_LIST(list_len).OBJECT := Shapes.RETICLE;
WORK_LIST(list_len).COLOR := Graphics.reticle_color;

Graphics.Display.Move(PRIORITY, WORK_LIST);

loop
begin -- exception block
Time_Stamp.Log(0062); --$TP(0062) Mouse Buffer task and accept
accept Reticle_Motion;

-- Get new positions of reticle (mouse)
Interrupt_Controt.Disable;
TEMP_X := WORK_LIST(list_len).XY_OLD.X + MOUSE_X;
TEMP_Y := WORK_LIST(list_ien).XY_OLD.Y - MOUSE_Y;
Interrupt_Control.Enable;

-- Check bounds of reticle; don‘t let it go past edge of battlefied screen.

if (YVEMP_X + Shapes.RETICLE_LEFT) < left_Limit then
TEMP X := left_limit - Shapes.RETICLE_LEFT;

elsif (TEMP_X + Shapes.RETICLE_RIGHT) > right_limit then
TEMP_X := right_limit - Shapes.RETICLE_RIGHT;

end if;

if (TEMP_Y + Shapes.RETICLE_TOP) < top_limit then
TEMP_Y := top_limit - shapes.reticle_top;

elsif (TEMP_Y + Shapes.RETICLE_BOTTOM) > bottom_Limit then
TEMP_Y := bottom_Limit - Shapes.RETICLE_BOTTOM;

end if;

WORK_LIST(list_len).XY_NEW.X := TEMP_X;
WORK_LIST(list_len).XY_NEW.Y := TEMP_Y;
-- update global accessable values
Interrupt_Control.Disable;
OLD_ABS_X := TEMP_X;
OLD_ABS_Y := TEMP_Y;
Interrupt_Control.Enable;
1ime_Stamp.Log(0063); --$TP(0063) Mouse Buffer rendezvous with Graphics start

Graphics.Display.Move(PRIORITY, WORK_LIST);

-130-

Distributed Issues Final Report

Time_Stamp.Log(0064); --$TP(0064) Mouse Buffer rendezvous with Graphics end

WORK_LIST(list_len).XY OLD := WORK_LIST(list_len).XY_NEW;
exception
when others =>
Debug_l0.Put_Line("“Error in Save');

end; -- exception block
Time_Stamp.Log(0065); --$TP(0065) Mouse_Buffer task end
end toop;

end Save_Type;

end Mouse_Buffer;

-131-

Distributed Issues Final Report

--% UNIT: Mouse_Data Specification. .-
--% Effects: Provides relevant data structures and constants. --
--X Modifies: Nothing. o
--% Requires: Nothing. -
--% Raises: Nothing. b
--% Engineer: M. Sperry. -

PACKAGE SPEC : Mouse Data

Package Mouse Data provides the data structures and constants necessary
to intialize and run a Logitech C7 serial mouse at 4800 baud, no parity, 7
data bits, and two stop bits. The Logitech mouse is capable of 8 different
formats. Relative Bit Pad One is chosen here because it allows twelve
bits of motion data for each repo t. Although this creates more work in
the processing of each byte of data (there are five bytes of data in each

|
!
I
f
I
I
|
[
|
--| report) there is more accuracy in the pointing device.
| The mouse controls the movement of the reticle (defined in the Graphics
| package) by receiving a report, generating the motion in X and Y
| coordinates, and sending these values to package Mouse_Buffer for
| processing (task Save).
| The reports come in 28 msecs apart with a 2 msec interval between each
| byte of the report. A report consists of the following in Relative Bit Pad
| one:

|

I

P 6 S 4 3 2 1 0 = bit number

I
I
!
| YS Y46 Y3 Y2 Y1 Y0 Byte
| p O Y11 Y10 Y9 Y8 Y7 Y6 Byte
-] \- no parity
| L,M,R above stands for Left, Middle, and Right buttons; 1 = key pressed.
I
I
|

The mouse is located at COM2 on an AT which is base address 2f8 (hex).

-- Modifications Log
-- 89-04-15 : MPS => Original created.
-- 89-08-08 : MPS => Defined COM2 addresses in HW_Config.

.

with Types;

with Low_Level _[O;

with Unchecked Conversion;
with HW_Config;

use Low_Level_10;

-132-

Distributed Issues Final Report

package Mouse_Data is

spec_eoi : constant Low_Level IO.BYTE := 16#63#;--specific end int
sync_byte : constant Low_Level IO.BYTE := 63; -- used to sync reports

-- The following constants are bit masks to be used with the BIT_FIELD type.

reset : constant := &; -- teft button (reset statistics)
mode : constant := 3; -- middle button (change mode)
Launch : constant := 2; -- right button (fire rocket)

-- These constants are declared to aid in detecting serial errors during

-- transmision.
overflow : constant := 1; -- position from status (2FD)
framing : constant := 2; -- position from status (Z2fFD)

-- Because the data bits are received six bits at a time, the following record
-- representation clauses are used to convert two bytes of data (a least and
-- most significant) to a single signed twelve bit number.

type BIT6_TYPE is range 0 .. 63;
type GAP_TYPE is range 0 .. 15;

type RAW_MOUSE_WORD is
record
Low : BIT6_TYPE;
HIGH : BIT6_TYPE;
GAP : GAP_TYPE;
end record;

for RAW_MOUSE_WORD use
record
LOW at O range 0 .. 5;
HIGH at 0 range 6 .. 11;
GAP at 0 range 12 .. 15;
end record;

least_Llowl2 : constant := -2048;

type SIGNED_MOUSE_WORD is
record
LOW12 : Types.WORD range least_{owi2 .. 2047;
GAP : Types.WORD range 0 .. 15;
end record;

for SIGNED_MOUSE_WORD use
record
LOW12 at O range O .. 11;
GAP at 0 range 12 .. 15;

-133-

Distributed Issues Final Report

end record;
-- Most significant bit for the following type definition on TANDY 4000 : 15

type BIT_FIELD is array(0..15) of BOOLEAN;
pragma pack(BIT_FIELD);
for BIT_FIELD’size use 16;

function Raw_to_Signed is new Unchecked Conversion(RAW_MOUSE_WORD,
SIGNED_MOUSE_WORD);
function Byte_to_Bité is new Unchecked Conversion(Low_Level _I0.BYTE,BIT6_TYPE);
function Bits_to_Byte is new Unchecked_Conversion(B8IT_FIELD,Low_Level _I0.BYTE);
function Byte_to_Bits is new Unchecked_Conversion(lLow_Level_I0.BYTE,BIT_FIELD);

pic_and_mask : constant BIT_FIELD :=
(TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) ; -- Wwill enable level 03 (COM2)

-- The following constants are used in the initialization procedure of mouse.
-- They are used to access the serial port COM2 on a TANDY PC (386).

access_baud : constant Low_Level IO0.BYTE := 16480#;
-- access baud rate rgtrs.

host_baud : constant Low_Level _IO.BYTE := 16#18#;
-- 4800 baud (30h = 2400)

host_format : constant Low_Level _[0.BYTE := T&HTEH;
-- 4800,e,7,1

acknowl edge : constant Low_Level I0.BYTE := 16#20#;
-- mouse responds w/06h when

ack_response ¢ constant Low_Level I10.BYTE := 16#06#;
-- sent a space (20h)

data_new : constant Low_tevel IO.BYTE := 16#614;
-+ char received

mouse_format : constant Low_Level [O.BYTE := 16#42#;

-- Relative Bit Pad One

mouse_char_speed : constant Low_Level IO.BYTE := 16#4C#;
-- 35 reports/sec when moving

general_int_enable : constant Low_Level IO.BYTE := 16#08#;
-- for modem control register

specific_int_disable : constant Low_Level [0.BYTE := 16#00#%;
-- disable receive interrupt

specific_int_enable : constant Low_Level [0.BYTE := 16#01#;
-- enable receive interrupt
pic_8259_mr : constant Low_Level _IO.PORT_ADDRESS := 16#21#;
end Mouse_Data;
-134-

Distributed Issues Final Report

--% UNIT: Parameter Data Base Spec. --
--% Effects: Provides rocket data types and initial values. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No exceptions. --
--% Engineer: R. Chevier --

--| PACKAGE SPEC : Parameter_Data Base

ol

- This package defines the necessary default values for the rocket and

--| the targets. There are four different target types described in

--| simulate.Sensor.Targ_Sup. The type of rocket used to attack these targets
--| is described by the values below.

-
with Types;
package Parameter_Data_Base is

-- ROCKET VALUES --

-- type DEGREES_TYPE is digits 6 range 0.0..360.0;

-- type RATE_TYPE is digits 5;

-~ subtype MAX_ROCKET_RANGE is Types.WORD range 1..100;

-+ MAX_DEGRADED_ROCKETS : MAX_ROCKET RANGE := 1;

-~ type MASS_TYPE is digits 5 range 10.0..100.0;

-- type THRUST_TYPE is digits 6 range 100.0..100000.0;

-- type BURN_RATE_TYPE is digits 5 range 0.001..10.0;

-- type RESISTANCE_TYPE is digits 5 range 0.001..100.0;

-- type DRIFT_VELOCITY_TYPE is digits 5 range 0.0..0.5;

-- subtype ROCKET_TURN_ACCEL_TYPE is RATE_TYPE range 0.01..1000.0;

c_mass : constant := 40.0; -- kgs

c_fuel : constant := 300.0; -- kgs

c_thrust : constant := 6000.0; -- Newtons

c_burn_rate : constant := 5.0; -- kgs/sec

c_turn_burn_rate : constant := 0.05; -- kgs/degree

c_forward_drag : constant := (.1875; -- Newton-secs/meter (was 0.09375)
c_side_drag : constant := 0.203125; -- Newton-secs/meter

c_drift : constant := 0.0; -- meters/sec

c_turn_rate : constant := 200.0; -- degrees/sec

type ROCKET_PARAMETER_TYPE is record
MASS : Types.LONG_FIXED :
FUEL : Types.LONG_FIXED :

c_mass;

c_fuel;

-135-

THRUST
BURN_RATE
TURN_BURN_RATE
FORWARD_DRAG
SIDE_DRAG
DRIFT
TURN_RATE

end record;

Dis

: Types.LONG_FIXED :
: Types.LONG_FIXED
: Types.LONG_FIXED
: Types.LONG_FIXED :
: Types.LONG_FIXED :
: Types.LONG_FIXED
: Types.LONG_FIXED

tributed Issues Final Report

¢_thrust;

= c_burn_rate;

1= c_turn_burn_rate;

c_forward_drag;
¢_side_drag;
1= c_drift;

:T c_turn_rate;

TARGET

VALUES

MAX_VELOCITY_Y
MAX_VELOCITY X

CHANGE_DIR_FREQ

end record;

type TARGET_PARAMETER_TYPE is record

: Types.METERS; -- maximum velocity in Y per interval
: Types.METERS; -- maximum velocity in x per interval
DELTA_VELOCITY X :

Types .METERS; -- maximum change in x per intervat

: Types.WORD_INDEX; --

freq that x dir changes in intrvis

type TARGET_PARAMS_ARRAY is array(Types.TARGET_CLASS_TYPE) of

TARGET_PARAMS : TARGET_PARAMS_ARRAY :=

TARGET_PARAMETER_TYPE;

(Types.UNKNOWN =>

Types. T80

Types.SA9

(MAX_VELOCITY_Y => 2.000,
MAX_VELOCITY_X => 1,500,
DELTA_VELOCITY X => 0,125,
CHANGE DIR_FREQ => 25),

=>

(MAX_VELOCITY_Y => 1,750,
MAX_VELOCITY X => 1,250,
DELTA_VELOCITY X => 0.125,
CHANGE DIR_FREQ => 21),

=>

(MAX_VELOCITY_Y => 1,875,
MAX_VELOCITY X => 1.375,
DELTA_VELOCITY_X => 0.125,
CHANGE DIR_FREQ => 23),

Types.BMP2 =>

(MAX_VELOCITY_Y => 1.250,
MAX_VELOCITY X => 0.87S,
DELTA_VELOCITY X => 0.125,
CHANGE_DIR_FREQ => 15));

-- To simplify, all target types currently have the same DELTA_VELOCITY_X
-- (meaning the same acceleration) and the same pixel size representation.
-- Therefore, they all have the same right and left border limits, and

-- consequently are all created within these borders.

right_border_timit : constant := 3940.0;

-136-

Distributed Issues Final Report

left_border_Limit : constant := 60.0;

x_start_timit : constant := right_border_Limit - left_border_Limit;
target_start_y : constant := 3960.0;

target_start_z : constant := 0.0;

end Parameter_Data_Base;

-137-

Distributed Issues Final Report

--% UNIT: ROL Package Body Subunit. --
--%X Effects: Supports all Rocket Data Link functions of Simulator. -
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raisea exceptions are propagated --
--% Engineer: T. Griest. -

PACKAGE BODY : Simulate.RDL (Rocket Data Link)

issuing messages for new rocket positions and receiving messages

|
l
|
- The RDL package provides tasks to interface to the Rocket Data Link
[
| commanding new rocket attitudes.

|

- Modifications Log

-- 88-10-30 : TEG => Original created.

separate(Simulate)
package bodv RDL is -- Rocket Data Link Simulator

stack_size : constant := 348;
task type Rock_Sup_Type is
pragma PRIORITY(Config.rock_sup_priority);
end Rock_Sup_Type;
for Rock_Sup_Type’STORAGE_SIZ2E use INTEGER(Config.bytes_per_storage_unit *
stack_size);
Rock_Sup : Rock_Sup_Type;
task body Rock_Sup_Type is separate;
task body Report_Buf_Type is separate;

task body Guide_Buf Type is separate;

end ROL;

-138-

Distributed Issues Final Report

-<% UNIT: Report_Buf Task Body Subunit. --
--% Effects: Buffers Rocket report data between simulator and Control. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. .-
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T, Griest. -

TASK BODY : Simulate.RDL.Report_Buf

I
l
I
| The Report_Buf task acts as a buffer between the rocket data link
| support task Rock_Sup and the Rocket.Control task which processes
| the rocket data. The task contains only accept statements for
| rendezvous purposes to allow for schedule slippage from both sides.
| The data is a list of the rockets new positions as they fly across
--| the battlefield. Rocket.Controi is the receiver of this list and
| Rock_sup is the supplier. This routine should be contrasted to Guide buf.
| Note that if for some reason the Rock_Sup fails to deliver new rocket
| positions, Rocket.Control will still display the old positions (but only
| for one interval, after which if they are stitl missing are considered
| to have destroyed themselves). Note also that even if there are no rockets
| active, that a list is still passed with a length of zera.
I

-- Modifications Log

-- 88-11-30 : TEG => Original created.

with Debug_l0O;
with Time_Stamp;

separate (Simulate.RDL)

task body Report_Buf_Type is

use Types;

MSG_COUNT : Types.WORD := 1;

ROCKET_MSG : Rocket .ROCKET_MSG_TYPE;

begin
ROCKET_MSG.NUM_ROCKETS := 0; -- default
Loop
select
accept Put_Report(DATA : in Rocket.ROCKET_MSG_TYPE) do

Time_Stamp.Log(0066); -+$TP(0066) Report_Buf accept Put_Report start
ROCKET_MSG.NUM_ROCKETS := DATA.NUM_ROCKETS; -- copy data

ROCKET_MSG.ROCKET_LIST(Types.WORD_INDEX(1)..DATA.NUM_ROCKETS) :=
DATA.ROCKET_LIST(Types.WORD_INDEX(1)..DATA.NUM_ROCKETS);

MSG_COUNT := 1;

Time_Stamp.Log(0067); --$TP(0067) Report_Buf accept Put_Report end

-139-

Distributed Issues Final Report

end Put_Report;
or
when MSG_COUNT = 1 =>
accept Get_Report(DATA : out Rocket.ROCKET_MSG_TYPE) do
Time_Stamp.Log(0068); --8TP(0068) Report_Buf accept Get_Report start
DATA.NUM_ROCKETS := ROCKET_MSG.NUM_ROCKETS;
DATA.ROCKET _L1ST(Types.WORD_INDEX(1)..ROCKET_MSG.NUM_ROCKETS) :=
ROCKET_MSG.ROCKET_LIST(Types.WORD_INDEX(1)..ROCKET_MSG.NUM_ROCKETS);
MSG_COUNT := 0;
Time_Stamp.Log(0069); --$TP(0069) Report_Buf accept Get_Report end
end Get_Report;
end select;
end loop;
exception
when others =>
Debug_10.Put_Line("REPORT_BUF termination due to exception.");
end Report_Buf_Type;

-140-

Distributed Issues Final Report

--% UNIT: Rocket Package Spec. -
--% Effects: Provides structure for Rocket managment within BDS. --
--%X Modifies: No global data is modified. -
--% Requires: No initialization is required. .-
--X Raises: No explicitly raised exceptions are propagated. --
--% Engineer: 7. Griest. --

--| PACKAGE SPEC : Rocket

-

- This package contains the declaration to the control task which is
--| the main rocket processing task. It also declares the two main types
--| used for processing rocket information,

-- Modifications Log

-- 88-11-05 : TEG => Original created.

with Types;
with Config;
with Sync;

package Rocket is

stack_size : constan. := 1936; -- in bytes

type ROCKET_ITEM_TYPE is record -- provides essentials on a rocket
SYNC_TAG : Sync.SEQ_TYPE;
ROCKET_ID : Types.WORD_INDEX;
POSITION : Types.POSITION_TYPE;

end record;

type ROCKET_LIST_TYPE is -- list of all rocket data
array(Types.WORD_INDEX range <>) of ROCKET_ITEM_TYPE;

type ROCKET_MSG_TYPE is record
NUM_ROCKETS : Types.WORD_INDEX;

ROCKET_LIST : ROCKET_LIST_TYPE(1..Config.max_rockets);
end record;

type ROCKET_GUIDE_TYPE is record

-141-

Distributed Issues Final Report

ROCKET_ID : Types.WORD_INDEX;
ATMPOINT : Types.AIMPOINT _TYPE;
end record;

type ROCKET_GUIDE_LIST_TYPE is -- list of all guidance data
array(Types.WORD_1!IDEX range <>) of ROCKET_GUIDE_TYPE;

type ROCKET_GUIDE_MSG_TYPE is record

NUM_ROCKETS : Types.WORD_INDEX;

ROCKET_GUIDE_LIST : ROCKET_GUIDE_LIST_TYPE(1..Config.max_rockets);
end record;

task type Control_Type is -- Tor overall engagement control
entry Start;
entry Get_Next_Report(ROCKET_REPORT_MSG : in ROCKET_MSG_TYPE);
pragma PRIORITY(Config.control priority);

end Control_Type;

for Control_Tyoe’STORAGE_SIZE use INTEGER(Config.bytes_per_storage_unit *

stack_size);
Controt ¢ Control_Type;

end Rocket; -- package specification

-142-

Distributed Issues Final Report

--% UNIT: Rocket Package Body. .-
--% Effects: Provides structure for Rocket managment within BDS. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. .-
--% Engineer: T. Griest. --

PACKAGE BODY : Rocket

|
I
I
| The Rocket package provides all processing to maintain the rockets
| in flight.

| The rocket guidance activity is given overall control by the Control task.

| "Control® is used to accept rocket reports, and is responsible for engaging
--| the targets, providing updates to the Graphics.Display task, and generating

| the guidance messages for the Rocket Data Link. It achieves much of this

| with the assistance of one (or more) Guidance task(s). The Guidance task

| is responsible for taking a set of the rockets and producing a new

| aimpoint for each rocket/target in that set. The activities of the

| guidance task(s), as well as the Control task can be overiapped

| considerably, and therefore may benefit from the addition of processors.

|

-- Modifications Log

-- 88-11-25 : TEG => Original created.
-- 89-11-22 : MPS => Aimpoint_Info type created to allow less traffic on the

-- net.

with Debug_lO;

with Status; -- maintains number Rockets Active

with Shapes; -- for rocket shapes
with Graphics; -- for graphics operations/colors

with Distrib;
package body Rocket is
guidance_stack_size : constant := 660;

GUIDANCE_LIST_ERROR : exception; -- if guidance list does not match history
-- This history data is provided to a guidance task, which in turn processes
-+ it and returns the next guidance information needed for each rocket.

type POSITION_DATA_TYPE is record -- containing rocket/target information
ACTIVE : BOOLEAN; -- if rocket was previously active
ROCKET_POS : Types.POSITION_TYPE; -- latest rocket position
TARGET_POS : Types.POSITION_TYPE; -- latest target position

end record;

-143-

Distnibuted Issues Final Report

type POSITION_LIST_TYPE is
array(Types.WORD_INDEX ~ange <>) of POSITION_DATA_TYPE;

type AIMPOINT _LIST_TYPE is
array(Types.WORD_INDEX range <>) of Types.AIMPOINT_TYPE;

AIMPOINT _INFO : POSITION_LIST_TYPE(1..Config.max_rockets);
NEXT_GUIDE_MSG : ROCKET_GUIDE_MSG_TYPE;
task type Guidance _Type is
entry History(AIM_DATA : in POSITION_LIST_TYPE);
entry Next_Guidance(AIMPOINT_LIST : out AIMPOINT_LIST_TYPE);
pragma PRIORITY(Config.guidance_priority);
end Guidance_Type;
for Guidance_Type!STORAGE_SIZE use INTEGER(Config.bytes_per_storage_unit *

guidance_stack_size);

Rocket_Guide : array(Types.WORD_INDEX range 1..Distrib.num_guide_tasks)
of Guidance_Type;

task body Guidance_Type is separate;
task body Control_Type is separate;

end Rocket; -- package body

-144-

Distributed Issues Final Report

=% UNIT: Rock_Sup Task Body Subunit. -
--X Effects: Provides all Rocket Support for Simulator, including --
--% target intercept detection. --

--% Modifies: Updates state of rockets and targets in Simulator DBase. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. --

-- Copyright(C) 1988, LabTek Corporation. Permission is granted to copy
-- and/or use this software provided that this copyright notice is included
-- and all liability for its use is accepted by the user.

TASK BODY : Simulate.ROL.Rock_Sup

!

|

I

| The rocket support task provides the necessary rocket mction, based

| on previous position and the application of a new guidance aimpoint.

| 1t generates a new report "ROCKET_MSG" for a buffer task (Report_Buf)
--| to forward to the BDS Rocket.Control task. Likewise, the Rocket.Control

| task issues guidance messages to the buffer task (Guide_Buf) which are

| made available to the Rock_Sup task. ROCKET/TARGET intercepts are

| checked in the shared data base within the simulator. In such cases,

| both the rocket and target are destroyed (marked inactive).

}

-- Modifications tog
-- 88-12-05 : TEG => Original created.
-- 89-09-12 : MPS => Changed call to Traject to reflect new flight dynamics.

with Traject; -- trajectory planner

with Calendar;

with Interrupt_Control;

with Time_Stamp;

with Sync;

pragma ELABORATE(Traject, Calendar, Interrupt_Control, Time_Stamp);

separate (Simulate.RDL)

task body Rock_Sup Type is

use Calendar; -- for - operator

use T pes; -- for operators

use Sync; -- for sequence operations
start_position : constant Types.POSITION_TYPE :=

(Config.launch_x,Config.launch_y,Config. launch_z);

-145-

ROCKET_MSG :
GUIDE_MSG :
GUIDE_MSG_INDEX :
REPORT_MSG_INDEX :
POSITION :
SEQUENCE_TAG :
START_TIME :
DELAY_PERIOD

-- MAKE_REPORT: process

Distributed Issues Final Report

Rocket .ROCKET_MSG_TYPE;
Rocket.ROCKET_GUIDE_MSG_TYPE;
Types.WORD_INDEX;

Types .WORD_INDEX;
Types.POSITION_TYPE; -- temp
Sync.SEQ_TYPE := O;
Calendar.TIME;

: DURATION;

current rocket ID

procedure Make_Report(ID

: Types.WORD_INDEX; POS : Types.POSITION_TYPE) is
-- checks if rocket has collided with
-- any targets or ground. If so, delete
-- target(s) and rocket.

DELTA_X : Types.LONG_FIXED;
DELTA_Y : Types.LONG_FIXED;
DELTA_2 : Types.LONG_FIXED;
DELTA_TY : Types.LONG_FIXED; -- time for rocket to reach ground
ROCKET_POS : Types.POSITION_TYPE;
begin -- of Make_Report

--$TP(0070) Rock_Sup.Make_Report start

if POS.Z < 0.0 then
ROCKETS(ID).ACTIV

:= FALSE; -- destroy rocket

-- compute time it took to get to zero

DELTA_X := POS.X - ROCKETS(ID).POSITION.X;
DELTA_Y := POS.Y - ROCKETS(ID).POSITION.Y;
DELTA_Z := POS.Z - ROCKETS(ID).POSITION.Z;

if DELTA_Z = 0.0 then

DELTA_T := 0.0;
else

DELTA_T := Types.LONG_FIXED(ROCKETS(ID).POSITION.2/abs(DELTA_Z));

end if;

-- find terminal position of Rocket

ROCKET_POS.X := ROCKETS(ID).POSITION.X + DELTA_T*DELTA_X;
ROCKET_POS.Y := ROCKETS(ID).POSITION.Y + DELTA_T*DELTA_Y;
--TBD since targets are always at 2=0, collision point is always 0
-- ROCKET_P0S.2 := ROCKETS(ID).POSITION.2Z + Types.METERS(DELTA_T*DELTA_Z);

-- Now search target list to see if any targets within "kill_radius"

-- perimeter of rocket

for TARGET_ID in TARGETS’range loop

Interrupt_Control.Disable;

-- access to shared data

if TARGETS(TARGET_ID).ACTIVE then
DELTA_X := ROCKET_POS.X - TARGETS(TARGET_ID).POSITION.X;

-146-

Distributed Issues Final Report

DELTA_Y := ROCKET_POS.Y - TARGETS(TARGET_ID).POSITION.Y;
--TBD should use distance DISTANCE := Math.Sqrt(Types.METERS(DELTA_X*DELTA_X) +

--T18D Types.METERS(DELTA_Y*DELTA_Y) +
--18D Types .METERS(DELTA_2*DELTA_2)));
if abs DELTA_X < Config.kill_radius and -- this makes square box
abs DELTA_Y < Config.kill_radius -- around each target
then
TARGETS(TARGET_ID).ACTIVE := FALSE; -- destroy target
end if;
end if;
Interrupt_Control .Enable;
end loop;
else -- Rocket did not hit ground or target

REPORT_MSG_INDEX := REPORT_MSG_INDEX + 1;
ROCKET_MSG.ROCKET_LIST(REPORT_MSG_INDEX) := (SEQUENCE_TAG,ID,POS);
end if;
--$TP(0071) Rock_Sup.Make_Report end
end Make_Report;

begin
for ID in ROCKETS/range loop -- initialize to all inactive
ROCKETS(ID).ACTIVE := FALSE;
end loop;
START_TIME := Calendar.CLOCK; -- find out when xeq begins
loop

--$TP(0072) Rock_Sup task start
START_TIME := START_TIME + Config.interval;
if SEQUENCE_TAG = Sync.SEQ_TYPE’last then -- update TIME_TAG to be able

SEQUENCE_TAG := 0; -- to differentiate between
else -- stale and new reports
SEQUENCE_TAG := SEQUENCE_TAG + 1;
end if;

--$TP(0073) Rock_Sup rendezvous with Guide Buf start
ROL.Guide Buf.Get_Guide(GUIDE_MSG); -- fetch latest guidance message
--$TP(0074) Rock_Sup rendezvous with Guide_Buf end

-- Go through each rocket, and if active, apply trajectory to
-- current position for 1 interval.

GUIDE_MSG_INDEX := 1; -- pointer msg.rocket_guide_list
REPORT_MSG_INDEX := 0;
for ROCKET_ID in ROCKETS’range loop
if GUIDE_MSG_INDEX <= GUIDE_MSG.NUM_ROCKETS and then
ROCKET_ID = GUIDE_MSG.ROCKET_GUIDE_LIST(GUIDE_MSG_INDEX).ROCKET_1D
then

-147-

Distributed Issues Final Report

This rocket is in the list, see if it was previously active
if not ROCKETS(ROCKET_ID).ACTIVE then

filter out guidance messages for rockets that have recently been
destroyed (but BDS doesn’t know it yet)

if GUIDE_MSG.ROCKET_GUIDE_LIST(GUIDE_MSG_INDEX).AIMPOINT .ELEVATION =
Config.launch_elevation

then -- a new launch
ROCKETS(ROCKET_ID).ACTIVE := TRUE; -- launch
ROCKETS(ROCKET_ID).POSITION := start_position;
Make_Report(ROCKET_ID,start_position); -- start at launcher

end if;

else

Now compute new X,Y,Z position.

Traject.Get_New_Position(ROCKET_ID,
GUIDE_MSG.ROCKET_GUIDE_LIST(GUIDE_MSG_INDEX).AIMPOINT,
POSITION);

Make_Report(ROCKET_ID,POSITION);

ROCKETS(ROCKET_ID).POSITION := POSITION;

end if; -- rocket active check
GUIDE_MSG_INDEX := GUIDE_MSG_INDEX + 1;
else -- no guidance for this rocket

if ROCKETS(ROCKET_ID).ACTIVE then
no guidance information for active rocket, simply don’t move it

POSITION := ROCKETS(ROCKET_ID).POSITION;
Make_Report(ROCKET_ID,POSITION);

end if; -- rocket active check
end if; -- guide entry exists check
end loop;

New report list has been generated. Send it to buffer task.

ROCKET_MSG.NUM_ROCKETS := REPORT_MSG_INDEX;

--$TP(0075) Rock_Sup rendezvous with Report_Buf start
ROL.Report_Buf.Put_Report(ROCKET_MSG); -- issue next rocket report
--$TP(0076) Rock_Sup rendezvous with Report_Buf end

Delay to make rocket motion reports periodic

DELAY_PERIOD := START_TIME - Calendar.CLOCK;
if DELAY_PERIOD < 0.0 then
START_TIME := CLOCK;
end if;
--$TP(0077) Rock_Sup task end
delay DELAY_PERIOD;

-148-

Distributed Issues Final Report

end loop;
end Rock_Sup_Type;

-149-

Distributed Issues Final Report

--% UNIT: Sensor Package Body Subunit. --
--% Effects: Provides structure for all simulator Target motion. --
--% Modifies: Simulator target data is updated. --
--% Requires: Initialization is performed by Sensor.Initialize. --
--% Raises: TARGET_CREATE_ERROR is raised if no room for more targets.--
--% Engineer: M. Sperry. --

PACKAGE BODY : Simulate.Sensor

The sensor package supports the targ_sup task by keeping a history
of the old target position, the current X velocity of the target, a

and finally the attributes of the class of the target. The Y velocity
is constant with respect to the class of the ftarget, as is the turning

|
I
|
|
I
--| desired X velocity of the target, how long to stay at that desired velocity
I
|
| frequency of the X direction.
|

-- Modifications Log
-- 88-10-22 : TEG => Original created.
-- 89-11-27 : MPS => Get_New_ID, Get_New_Position, and Activate_Target created.

with Interrupt_Control;
with Math;
with Parameter_Data_Base;
with Time_Stamp;
with Debug_10;
pragma ELABORATE(Math, Debug_IO, Interrupt_Control);

separate(Simulate)

package body Sensor is -- Target Sensor Simulator
use Types;

type HISTORY REC is record
OoLD_POS : Types.POSITION_TYPE;
CURRENT_VEL _X : Types.METERS;
DESIRED_VEL_X : Types.METERS; -- generated randomly every CHANGE _DIR_FREQ
CHANGED _VEL_TIME : Types.WORD_INDEX; -- intervals since DESIRED was changed
ATTRIBUTES : Parameter_Data_Base.TARGET_PARAMETER_TYPE;

end record;

type HISTORY_TYPE is array(Types.TARGET_INDEX_TYPE) of HISTORY_REC;

TARGET_HISTORY : HISTORY_TYPE;
LAST_USED_TARGET_ID : Types.TARGET_INDEX_TYPE;

-150-

Distributed Issues Final Report

procedure Initialize is

-
--| SUBPROGRAM BODY : Simulate.Sensor.Initialize

-

--| Initialize is responsible for setting the LAST_USED_TARGET_ID to the first
--| allowable value of that type. Also, it sets all targets to an inactive

--| (FALSE) state.

begin
LAST_USED_TARGET_ID := Types.TARGET_INDEX_TYPE'first;
for ID in Types.TARGET_INDEX_TYPE loop
TARGETS(ID).ACTIVE := FALSE;
end loop;
end Initialize;

function Get_New_ID return Types.TARGET_INDEX_TYPE is

-

--| SUBPROGRAM BODY : Simulate.Sensor.Get_New_ID

=l

--| To simplify the code in Targ_Sup, this function keeps track of the last
--| target id used (a package level variable in Sensor.ab) and returns a new
--| target id that is not currently being used. The target id’s rollover at
--| Config.max_targets.

TARGET_ID : Types.TARGET_INDEX_TYPE;
TARGET_CREATE_ERROR : EXCEPTION;

begin
TARGET_ID := LAST_USED_TARGET_ID;
Loop -~ loop through each target_id starting from LAST_USED_TARGET_ID

if not TARGETS(TARGET_ID).ACTIVE then
LASY_USED_TARGET_ID := TARGET_ID;
if LAST_USED_TARGET_ID = Types.TARGET_INDEX_TYPE'last then
LAST_USED_TARGET_ID := Types.TARGET_INDEX_TYPE’first;
end if;
exit;
else
if TARGET_ID = Config.max_targets then
TARGEV_ID := Types.TARGET_INDEX_TYPE'first;
else
TARGET_ID := TARGET_ID + 1;
end if;
if TARGET_ID = LAST_USED_TARGET_ID then -- no more room for targets,
raise TARGET_CREATE_ERROR; -- but told to create one
end if;
end if;
end loop;

-151-

Distributed Issues Final Report

return TARGET_ID;
exception
when TARGET_CREATE_ERROR =>
Debug_l0.Put("TARGET_CREATE_ERROR raised in Simulate.Sensor.Get_New_ID");
end Get_New_ID;

procedure Activate_Target(TARGET_ID : Types.TARGET_INDEX_TYPE) is

-

--| SUBPROGRAM BODY : Simulate.Sensor.Activate_Target

-

--| Activate_Target initializes the record which controls the target’s
--| history. It also assigns a random new starting position (in X only,
--| the starting Y and 2 positions are fixed) and a new class. The class
--| is chosen randomly via the package Math.

NUM_OF _CLASSES : Types.WORD_INDEX;

CLASS : Types.TARGET_CLASS_TYPE;
POS_X : Types.METERS;

MAX_X_VEL : Types.METERS;

begin

-- Limit the access to the shared data base in Simulate.

Interrupt_Control.Disable;

-- Initialize Simulate.TARGETS data base.
TARGETS(TARGET_ID).ACTIVE := TRUE;
TARGETS(TARGET_ID).POSITION.Y := Types.LONG_FIXED(
Parameter_Data_Base.target_start_y);
TARGETS(TARGET_ID).POSITION.Z := Types.LONG_FIXED(
Parameter_Data_Base.target_start_z);
POS_X := Math.Get_Random_Num(Types.METERS(
Parameter Data_Base.x_start_limit));
POS_X := POS_X ¢ Parameter_Data_Base.left_border_Llimit;
TARGETS(TARGET_ID).POSITION.X := Types.LONG_FIXED(POS_X);
NUM_OF _CLASSES := Types.WORD_INDEX(Types.TARGET_CLASS_TYPE’pos(
Types.TARGET_CLASS_TYPE’last));
CLASS := Types.TARGET_CLASS_TYPE'val(Math.Get_Random_Num(NUM_OF CLASSES+1));
TARGETS(TARGET_10).TARGET_CLASC := CLASS;

-- Enable the interrupts again.

Interrupt_Control.Enable;

-- Initialize Sensor.TARGET_HISTORY data base.

TARGET_HISTORY(TARGET_10).0LD_POS := TARGETS(TARGET_ID).POSITION;

-152-

Distributed Issues Final Report

TARGET_HISTORY(TARGET_ID).ATTRIBUTES :=
Parameter_Data_Base.TARGET_PARAMS(CLASS);
MAX_X_VEL := TARGET_HISTORY(TARGET_ID).ATTRIBUTES.MAX_VELOCITY_X;
TARGET_HISTORY(TARGET_ID).CURRENT_VEL_X := Math.Get_Random_Num(
Types.METERS(2 * MAX_X _VEL));
TARGET_HISTORY(TARGET_ID).CURRENT_VEL_X := MAX_X_VEL -
TARGET_HISTORY(TARGET_ID).CURRENT_VEL_X;
TARGET_HISTORY(TARGET_ID).CHANGED_VEL_TIME := 0;
TARGET_HISTORY(TARGET _ID).DESIRED_VEL_X := Math.Get_Random_Num(
Types.METERS(2 * MAX_X_VEL));
TARGET_HISTORY(TARGET _ID).DESIRED_VEL_X := MAX_X_VEL -
TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X;
end Activate_Target;

procedure Get_New_Position(TARGET_ID : Types.TARGET_INDEX_TYPE) is

SUBPROGRAM BODY : Sensor.Get_New Position

!

|

I

| Get_New Position is responsible for updating the history of the targets
--| and more importantiy to return to TARGETS a new target position in the

| Types.POSITION_TYPE, which is made up of Types.LONG_FIXED. The target

| is not allowed to leave the battlefield border area, therefore it changes

| directions before bouncing against the side of the border.

[

DIR_FREQ : Types.WORD_INDEX;
MAX_X_VEL : Types.METERS;
MAX_Y_VEL : Types.METERS;
DELTA_X : Types.METERS;
CLASS : Types.TARGET_CLASS_TYPE;
INTERVALS_LEFT : Types.METERS;
X_POS_EST ¢ Types.METERS;
begin
Time_Stamp.Log(0122); --$TP(0122) Sensor.Get_New _Position start

-- Place often used but complex address catculation type variables in
-- local space.
CLASS := TARGETS(TARGET_ID).TARGET_CLASS;
DIR_FREQ := TARGET_MISTORY(TARGET_ID).ATTRIBUTES.CHANGE _DIR_FREQ;
MAX_X_VEL := TARGET_HISTORY(TARGET_ID).ATTRIBUTES.MAX_VELOCITY_X;
MAX_Y_VEL := TARGET_HISTORY(TARGET_ID).ATTRIBUTES.MAX_VELOCITY_Y;
DELTA_X := TARGET_HISTORY(TARGET_ID).ATTRIBUTES.DELTA VELOCiTY_X;

-- Check to see if it is time to change dir.

if TARGET_HISTORY(TARGET_ID).CHANGED_VEL_TIME = DIR_FREQ then

-- Time to change the X direction. The DESIRED_VEL X is a random number of

-153-

Distributed Issues Final Report

-- Types.METERS between +MAX_X_VEL and -MAX_X_VEL.
TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X := Math.Get_Random_Num(
Types .METERS(2 * MAX_X_VEL));
TARGET_HISTORY(TARGET _ID).DESIRED_VEL X := MAX_X_VEL -
TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X;
TARGET_HISTORY(TARGET_ID).CHANGED_VEL_TIME := 0;
end if;
-- Increment the counter that keeps track of when it is time to change direction
TARGET_HISTORY(TARGET_ID).CHANGED_VEL_TIME :=
ARGET_HISTORY(TARGET_ID).CHANGED_VEL_TIME + 1;

-- Avoid hitting the battlefield border area.
if TARGET_HISTORY(TARGET_ID).CURRENT_VEL_X > 0.0 then
if TARGETS(TARGET_ID).POSITION.X < Parameter_Data_Base.left_border_Limit
and TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X > 0.0 then -- going teft
TARGET_HISTORY(TARGET_ID).DESIRED VEL X :=
-TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X;
end if;
else
if TARGETS(TARGET_ID).POSITION.X > Parameter_Data_Base.right_border_Limit
and TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X < 0.0 then -- going right
TARGET_HISTORY(TARGET_ID).DESIRED_VEL X :=
-TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X;
end if;
end if;
-- Adjust the CURRENT_VEL_X by DELTA_X if need be.
if TARGET_HISTORY(TARGET_ID).CURRENT_VEL X <
TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X
then
TARGET_HISTORY(TARGET_ID).CURRENT_VEL X :=
TARGET_HISTORY(TARGET_ID).CURRENY_VEL_X + DELTA_X;
elsif TARGET_HISTORY(TARGET_ID).CURRENT_VEL X >
TARGET_HISTORY(TARGET_ID).DESIRED_VEL_X
then
TARGET_HISTORY(TARGET_ID).CURRENT_VEL_X :=
TARGET_HISTORY(TARGET_ID).CURRENT _VEL_X - DELTA_X;
end if;
-- Ascertain the new position based on the velocities of the class, saving
-- the old position first, and guarantee mutally exclusive access.

TARGET_HWISTORY(TARGET_10).0LD_POS := TARGETS(TARGET_ID).POSITION;

Interrupt_Control .Disable;
if TARGETS(TARGET_ID).ACTIVE then

-154-

Distributed Issues Final Report

TARGETS(TARGET_ID).POSITION.X := TARGETS(TARGET_[D).POSITION.X -
Types.LONG_FIXED(TARGET_HISTORY(TARGET_ID).CURRENT VEL X);
TARGETS(TARGET_ID).POSITION.Y :=
TARGETS(TARGET_ID).POSITION.Y - Types.LONG_FIXED(MAX_Y_VEL);

-- The 2 direction is not currently implemented for targets.

TARGETS(TARGET_ID).POSITION.Z := Types.LONG_FIXED(0.0);
end if;
Interrupt_Control.Enable;
Time_Stamp.Log(0123); --$TP(0123) Sensor.Get_New_Position end
end Get_New_Position;

task body Targ_Sup_Type is separate;

end Sensor; -- body

-155-

Distributed Issues Final Report

--% UNIT: Shapes Package Spec. --
--% Effects: Provides all graphics symbology. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest / M. Sperry. --

PACKAGE SPEC : Shapes

I
I
I
| Package Shapes is responsible for determining the relative offsets
| which define the shapes of all the poussible symbols that can be drawn.
| The reticle is the pointing box that is controlled by the mouse. Note
--| that where the coordinate (0,0) is defined in terms of the shapes of
| the object. For examplte the nose of the rocket is considered to be
| explosive in our case. Therefore the nose of the rocket has the coordinates
| (0,0). Likewise, the center of the target has the (0,0) coordinate. The
| objects are all manipulated by their absolute coordinates or rather,
| the coordinate (0,0).
|

-- Modifications Log
-- 88-10-12 : MPS => Original created.
-- 89-08-08 : MPS => Adjusted to work with new DOC compiler

Wwith Types;
with Config;

package Shapes is

type SYMBOL_TYPE is (ROCKET, TARGET, RETICLE, DOT, ZERQO, ONE, TWO, THREE, FOUR,
FIVE, SIX, SEVEN, EIGHT, NINE, HORIZONTAL, VERTICAL);

type PIXEL is record

A.Types.COORDINATE range Config.entire_screen_left..Config.entire_screen_right;
Y:Types.COORDINATE range Config.entire_screen_top..Config.entire_screen_bcttom;
end record;

type REL_PIXEL is record -- offset from base of pixel
X_OFFSET : Types.REL_COORDINATE; -- positive goes right
Y_OFFSET : Types.REL_COORDINATE; -- positive goes down

end record;
type PIXEL_LIST is array(Types.WORD_INDEX range <>) of REL_PIXEL;

type OBJECT_PTR is access PIXEL_LIST;

-156-

Distributed Issues Final Report

reticle_teft : constant := -5; -- constants used to check if
reticle_right : constant := 5; -- reticle going past screen
reticle_top : constant := -5; -- boundaries.

reticle_bottom : constant := 5;

-- The following two constants determine how far the target center can
-- be in meters from the indicated reticle center and still allow

-- aquisition of the target for launching a rocket. They are not the
-- same in X and Y, since the reticle is slightly rectangular.

reticle_x_error: constant := 40.25; -- METERS to allow target aquisition
reticle_y_error: constant := 49.50; -- METERS to allow target aquisition
NUMERIC : array(0..9) of SYMBOL_TYPE := (ZERQO, ONE, TWO, THREE, FOUR,

FIVE, SIX, SEVEN, EIGHT, NINE);

number_width : constant := 8; -- widest number in pixels
ml : constant := -1;
m2 : constant := -2;
m3 : constant := -3;
mé : constant := -4;
m5 : constant := -5;
mb : constant := -6;
m7 : constant := -7;
m8 : constant := -8;

OBJECT_PTR_TABLE : array(SYMBOL_TYPE) of OBJECT_PTR :=
(TARGET => new PIXEL_LIST’(
(0,m2),
(mt,mt), (1,ml),
(m2,0), (0,0), (2,00,
m,H, (1,),
(0,2)),

ROCKET => new PIXEL_LIST/(
0,0y,
0,1,
(0,2),
(0,3,
(ml, &), (1,4)),

RETICLE => new PIXEL_LIST’(

(m5,m5),(mh,m5),(m3,m5), (3,m5),(4,m5),(5,m5),
(m5,mb), (5,m4),
(m5,m3), (0,m3), (5,m3),
(0,m2),
(0,m1),
(m3,0), (m2,0), (m1,0), (0,0), (1,00, (2,0), (3,00,
0,1,
0,2,

-157-

(m5,3),
(m5,4),
(m5,5),(m4,5),(m3,5),

DOT => new PIXEL_LIST'((

ZERO => new PIXEL_LIST’(

ONE => new PIXEL_LIST/(

TWO => new PIXEL_LIST'(

THREE => new PIXEL_LIST'(

FOUR => new PIXEL_LIST'(

Distributed Issues Final Report

(0,3, (5,3,
(5,4),
(3,5),(4,5),(5,50,
0,0),¢(0,0)),

(1,m8),(¢2,m8),(3,m8),(4,m8),(5,mB),
(0,m7), 6,m7),
(0,mb), (5,mb),(6,mb),
(0,m5), (4,m5), 6,m5),
(0,mé), (3,m4), (6,mb),
(0,m3), (2,m3), 6,m3),
(0,m2),(1,m2), 6,m2),
(0,m1), 6,ml),

1,0y, (2,0), (3,00, (4,0), (5,00},

(4,m8),

3,m7),(4,m7),
(4,mb),
4,m5),
(4,mh),
(4,m3),
(4,m2),
(4,m1),

(3,0), (4,00, (5,0)),

(1,m8),(2,m8),(3,m8), (4,m8),
(0,m?7), (5,m7),
(5,md),
(4,mS),
3,ms),
(2,m3),
(1,m2),
(0,m1),
0,0y, (1,0), (2,00, (3,0}, (4,0), (5,00),

(1,m8),(2,m8),(3,m8),
(0,m7), 6,n?7),
(4, mb),
(4,m5),
(2,mb4),(3,md),
(4,m3),
(4,m),
(o,m1), (6,m1),
(1,00, (2,00, (3,00,

(4,m8),

(3,m7),(4,m7),

2,mé), (4,mb),

(1,m5), (4,m5),
0,ms),(1,mh),(2,mh),(3,mb), (4,md),(5,m),

-158-

Distributed Issues Final Report

(4,m3),
(4,m2),
(4,m1),

(3,00, 4,0y, (5,07,

FIVE => new PIXEL_LIST’((1,m8),(2,m8),(3,m8),(4,m8),(5,mB),
0,m7),
(0,mé),
0,m5),

(1,mh),(2,me),(3,mb), (4,mb),

(5,m3),

(5,m2),

(5,m1),

0,0y, 1,0y, ¢2,0), (3,03, (4,0), (5,0)),

SIX => new PIXEL_LIST'((3,m8),(4,m8),
(2,m7),
(1,m7),

(0,mé},
(0,m5), (1,m5),(2,m5),(3,m5),
(0,m4), (4,me),
(0,m3), (4,m3),
(0,me), (4,m2),
0,m1), (4,ml),

1,0, 2,00, (3,00,

SEVEN => new PIXEL_LIST’(¢1,m8),(2,m8),(3,m8),(4,m8),(5,m8),
(0,m7), (5,m7),
(4,mb),
(3,m5),
2,mb),
(1,m3),
(0,m2),
(0,mt),
(0,00,
EIGHT => new PIXEL_LIST’((1,m8),(2,m8),(3,m8),(4,m8),
(0,m7), (5,m7),
(0,mé), 5,m6),
(0,m5), 5,m5),
(1,m4),(2,mb),(3,mb),(4,mb),
(0,m3), (5,m3),
(0,m2), (5,m2),
(0,m1), (5,ml),

1,0y, (2,00, (3,0), (4,00,

NINE => new PIXEL_LIST'((1,m8),(2,m8),(3,m8), (4,md),
(0,m7), (5,m7),
(0,ms), (5,m6),
(0,m5), (5,m5),

(1,mh),(2,mb),(3,m), (6,ms),(5,m),

-159-

Distributed Issues Final Report

(5,m3),
(4,m2),
(3,m1),
(1,0), 2,00,

HORIZONTAL => mew PIXEL_LIST!((0, 0),(¢1, 0),¢2, 0),(3, 0),(4, 0),(5, 0),
6, 0),(7, 0),(8, 0),(9, 0),¢10,0),(11,0),
(12,0),(13,0),(14,0),(15,0),¢16,0),¢17,0),
(18,0),¢19,0),¢20,0),¢21,0),¢22,0),¢23,0),
(24,0),(25,0),(26,0),(27,0),(28,0),(29,0),
(30,0),(31,0),¢32,0),(33,0),(34,0),(35,0),
36,0),(37,0),¢38,0),(39,0),(40,0),(41,0),
(42,0),(43,0),(44,0),(45,0),(46,0),(47,0),
(48,0),(49,0),(50,0),(¢51,0),(¢52,0),(53,0),
(54,0),(55,0),(56,0),(57,0),(58,0),(59,0),
(60,0),(61,0),(62,0),(63,0),(64,0),(65,0),
(66,0),(67,0),(68,0),(69,0),(70,0),(71,0),
(72,0),(73,0),(74,0),(75,0),(76,0),(77,0),
(78,0)),

VERTICAL => new PIXEL_LIST’((0, 0),(0, 1),(0, 2),(0, 3),(0, 4),(0, 5),
(0, 6),(0, 7),(0, 8),(0, 9),(0,10),¢0,11),
(0,12),(0,13),¢0,14),¢0,15)));

end Shapes;

-160-

Distributed Issues Final Report

--% UNIT: Simulate Package Spec. .-
--% Effects: Provides shared data base for Simulator. --
--% Modifies: No global data is modified. --
--% Requires: Individual tasks are responsible for init. of global data.--
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. --

--| PACKAGE SPEC : Simulate

-

--] The Simulate package is used to provide input and output to the
--| BDS system. It provides rocket flight paths and target generation.

-- Modificiations Log

-- 88-10-15 : TEG => Original created.

with Target;
with Rocket;
with Sync;

with Config;

package Simulate is -- Overall simulation package
package Sensor is -- Target Sensor Simulator
stack_size : constant := 114; -- in bytes

task type Targ_Sup_Type is
pragma PRIORITY(Config.targ_sup priority);
entry Next_Target_Msg(Data : out Target.TARGET_MSG_TYPE);
end Targ_Sup_Type;
for Targ_Sup_Type’STORAGE_SIZE use INTEGER(Config.bytes_per_storage_unit *
stack_size);
Targ_Sup : Targ_Sup_Type;
end Sensor;

package RDL is -- Rocket Data Link Simulator
report_buf_stack_size : constant := 302; -- in bytes
guide_buf_stack_size : constant := 744; -- in bytes

-- The Report_Buf task buffers Rocket Reports from the Rock_Sup task
-- and provides them to the Rocket.Control task
task type Report_Buf_Type is
pragma PRIORITY(Config.report_buf_priority);
entry Put_Report(DATA : in Rocket.ROCKET_MSG_TYPE);

-161-

Distributed Issues Final Report

entry Get_Report(DATA : out Rocket.ROCKET_MSG_TYPE);
end Report_Buf_Type;
for Report_Buf_Type’STORAGE_SIZE use INTEGER(Config.bytes_per_storage_unit
* report_buf_stack_size);
Report_Buf : Report_Buf_Type;

-- The Guide_Buf task buffers new Guidance messages from the Rocket.Control
-- task for delivery to the Rock_Sup task.
task type Guide_Buf_Type is
pragma PRIORITY(Config.guide_buf_priority);
entry Put_Guide(DATA : in Rocket.ROCKET_GUIDE_MSG_TYPE);
entry Get_Guide(DATA : out Rocket.ROCKET_GUIDE_MSG_TYPE);
end Guide_Buf_Type;
for Guide Buf_Type’STORAGE_SIZE use INTEGER(Config.bytes_per_storage_unit
* guide_buf_stack_size);
Guide_Buf : Guide_Buf_Type;

end ROL;

end Simulate;

-162-

in

Distributed Issues Final Report

--% UNIT: Simulate Package Body. .-
--% Effects: Provides shared data base for Simutator. .-
--% Modifies: No global data is modified. --
--% Requires: Individual tasks are responsible for init. of global data.--
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. --

--| PACKAGE BODY : Simulate

-

--] This package is responsible for implementation of the “driver®

--| for the BDS. The simulator provides random target generation (subject
--| to a limit maximum), rocket trajectories, and target motion.

-

-- Modifications Log

-- 88-10-29 : TEG => Original created.

with Types;

-- Simulator package to provide testing of BDS system

package body Simutate is -- Overall simulation package

type TARGET_SIM_TYPE is record -- provides individual target information
ACTIVE : BOOLEAN;
POSITION : Types.POSITION_TYPE;
TARGET_CLASS : Types.TARGET_CLASS_TYPE;

end record;

type TARGETS_TYPE is
array(Types .WORD_INDEX range 1..Config.max_targets) of TARGET_SIM_TYPE;

TARGETS : TARGETS_TYPE;

type ROCKET_SIM_TYPE is record -- provides individual rocket information
ACTIVE : BOOLEAN;
POSITION : Types.POSITION_TYPE;

end record;

-163-

Distributed Issues Final Report

type ROCKETS_TYPE is

array(Types.WORD_INDEX range 1..Config.max_rockets) of ROCKET_SIM_TYPE;

ROCKETS : ROCKETS_TYPE;

package body Sensor is separate; -- Target Sensor Simulator
package body RDL is separate; -- Rocket Data Link Simulator
end Simulate; -- body
-164-

Distributed Issues Final Report

--% UNIT: Status Package Spec. .-
--% Effects: Maintains indicators and statistics on graphics display. --
--% Modifies: Flags are cleared in spec. when values are displayed. --
--% Requires: Initialization must be signaled by main for first display.--
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: M. Sperry. .-

PACKAGE SPEC : Status

|

I

I

| The purpose of the Status specification package is to provide visibility

| to the data base which holds the requests from the mouse, et. al. The

| requests are entered into a data table (called STATUS_CONTROL) and then
--| the table is checked to see if any updating of the statistics needs to be

| done. The checking of the table is done at an atomic level to prevent

| the shared data from being corrupted at critical times. The commands are

| processed from the mouse interrupt as mode first, then reset if there are

| two commands to perform.

I

-- Modifications Log

-- 88-11-08 : MPS => Original created.

with Types;
with Config;

package Status is
stack_size : constant := 252;
type MODE _TYPE is (AUTOMATIC,MANUAL);
type STATUS_TYPE is (AIRBORNE, TRACKED, EXPENDED, DESTROYED);
subtype RESET_STATUS_TYPE is STATUS_TYPE range EXPENDED..DESTROYED;
type STATUS_RECORD is record

DATA : Types.WORD := 0; -- new statistic

DISPLAYED : BOOLEAN := FALSE; -- need to display
end record;

type STATUS_TYPE_ARRAY is array(STATUS TYPE'FIRST .. STATUS_TYPE'LAST) of
STATUS_RECORD;

-- define shared variables

-165-

MODE
MODE_D1SPLAYED
STATUS_CONTROL
REQ_COUNT

STATUS_ERROR

Distributed Issues Final Report

MODE_TYPE := MANUAL;
BOOLEAN := FALSE;
STATUS_TYPE_ARRAY;

: Types.WORD := O;

: EXCEPTION;

-- define subprograms and tasks

procedure Initialize;

task type Update_Type is

entry Signal;
pragma PRIORITY(Config.update_priority);
end Update_Type;

-- if data negative

-- initialization of screen

for Update_Type’STORAGE_SIZE use INTEGER(Config.bytes_per_storage_unit *

Update

end Status;

Update_Type;

stack_size);

-166-

Distributed Issues Final Report

--% UNIT: Status Package Body. i
--% Effects: Maintains indicators and statistics on graphics display. --
--% Modifies: Flags are cleared in spec. when values are displayed. --
--% Requires: Initialization must be signaled for first display. --
--X Raises: No explicitly raised exceptions are propagated. --
--% Engineer: M. Sperry. .-

ol
--| PACKAGE BODY : Status

-l

- The purpose of the status package body is the implementation of the status
--| update task. Although operating at a low priority, the update task updates
--| the various statistics by a rendezvous with the graphics task.

-- Modifications Log

-- 88-11-08 : MPS => Original created.

with Graphics;

with Interrupt_Control;

with Shapes;

with Machine_Dependent;

with Interrupt_Control;

with Debug_lI0;

with Time_Stamp;

pragma ELABORATE(Graphics, Interrupt_Control, Debug_I0, Time_Stamp);

package body Status is
use Types; -- for visibility to '+/;
procedure Initialize is

-

--| SUBPROGRAM BODY : Status.Initialize

|

--] This procedure is responsible for performing a rendezvous with graphics
--| for the purpose of printing the statistics titles. After this has been
--| done, this procedure signals the Status.Update task causing the initial
--| values of all the statistics to appear as well.

type TITLE_REC_TYPE is record
X, Y : Types.WORD;
TEXT : STRING(1..Config.stats_title_max_length);
COLOR : Graphics.COLOR_TYPE;

end record;

-167-

EMPTY : constant STRING :=

Distributed Issues Final Report

Hib o
.

TITLES : array(i..Config.number_of_titles) of TITLE_REC_TYPE :=

(¢0,0, “Airborne
(0,1, " Rockets:
(0,3, “Tracked
(0,4, " Targets:
(0,8, "Totals
(0,10, "Expended
(0,11," Rockets:
(0,13,"Destroyed
(0,14, Targets:
(0,18, "Mode:
(0,20," Manual

", Graphics.status_color),
", Graphics.status_color),
" Graphics.status_color),
" Graphics.status_color),
“ Graphics.status_color),
", Graphics.status_color),
%, Graphics.status_color),
w, Graphics.status_color),
" Graphics.status_color),
",Graphics.status_color),
", Graphics.status_color),

(0,22," Automatic®,Graphics.status_color));

begin

for I in 1..Config.number_

of _titles loop

Graphics.Display.Print_Titles(TITLES(I) . X, TITLES(I).Y,

end loop;

TITLES(I).TEXT,
TITLES(I).COLOR);

Graphics.Display.Print_Titles(0,0,EMPTY,Graphics.status_color);

Interrupt_Control.Disable;

-- go atomic

Status.REQ_COUNT := Status.REQ_COUNT + 1; -- signal a request (print zeroes)

Interrupt_tControl.Enable;
Status.Update.Signal;
end Initialize;

task body Update_Type is
-l

--| TASK BODY : Status.Updat

-- display statistics values

e

- This task is used as a low priority task which ensures that updates to
--| the statistics are performed. Only those stats which have changed since

--| the last update are writ

use Types;

x_start : constant
x_end ¢ constant
y_top_start_A ¢ constant
y_bottom_start_A : constant
y_top_start_M : constant
y_bottom_start_M : constant
manual_offset : constant
box_start : constant
box_end : constant
base_x : constant

ten to the screen.

-- for visibility to "+

= 11; -- column that status_box starts in x
1= 90; -- end column of status_box

= 307; -- status_box top AUTOMATIC

1= 322; -- status_box bottom AUTOMATIC

1= 278; -- status_box top MANUAL

sz 293; -- status_box bottom MANUAL

1= 29; -- offset to draw status_box

= 1; -- range of components that

=45 -~ make up status_box.

Types.COORDINATE := 120;-- x end of all statistics

-168-

Distributed Issues Final Report

airborne_y : constant Types.COORDINATE := 25; -- y location of stat
tracked_y : constant Types.COORDINATE := 67; -- y location of stat
expended_y : constant Types.COORDINATE := 165; -- y location of stat
destroyed_y : constant Types.COORDINATE := 207; -- y location of stat
y_statistics : constant array(STATUS_TYPE/first .. STATUS_TYPE’last) of

Types.COORDINATE := (airborne_y, tracked_y, expended_y, destroyed_y);

type STATUS_OLD is array(STATUS_TYPE’/first .. STATUS_TYPE’last,
1 .. Config.statistics_length) of Graphics.MOVE_RECORD;

NEXT_MODE : MODE_TYPE;

DISPLAY_REQUIRED : BOOLEAN;

NEXT_DATA : Types.WORD;

BOX_LIST : Graphics.MOVE_LIST_TYPE(Types.WORD_INDEX range box_start..box_end);
DATA_OLD : STATUS_OLD;

WORK_LIST : Graphics.MOVE_LIST_TYPE(?1 .. Config.statistics_length);
MOVE_PRIORITY : Graphics.PRIORITY_TYPE := Graphics.LOW;

procedure Initialize is
SUBPROGRAM BODY : Status.Update.lnitialize

NOT cause the digits to be drawn. Then, it initializes the status_box
around ‘manual’. Again, it does not cause the status_box to be drawn. A

!
I
I
--|{ A procedure which intializes the DATA_OLD data base. This procedure does
I
|
| wakeup call from the main task will cause it to be drawn.
|

begin
for | in STATUS_TYPE'/first .. STATUS_TYPE’last loop
for J in 1 .. Config.statistics_length toop

DATA_OLD(1,J).XY_OLD := (Types.COCRDINATE(base_x),Types.COORDINATE(y_statistics(1}))});
DATA OLD(I,J).XY_NEW := (Types.COORDINATE(base_x), Types.COORDINATE(y statistics(1)));
DATA_OLD(1,J).0BJECT := Shapes.ZERO;
DATA_OLD(1,J).COLOR := Graphics.status_color;
end loop;
end loop;

-- Now initialize top of status_box
BOX_LIST(1).XY_OLD :=
(Types.COORDINATE(x_start), Types.COORDINATE(y_top_start_A));
BOX_LIST(1).XY_NEW :=
(Types.COORDINATE(x_start),Types.COORDINATE(y_top_start_A));
BOX_LIST(1).0BJECT := Shapes.HORIZONTAL;
BOX_LIST(1).COLOR := Graphics.status_box_color;

-- define bottom of status_box

-169-

Distributed Issues Final Report

BOX_LIST(2).XY_OLD :=

(Types .COORDINATE(x_start), Types.COORDINATE(y bottom_start_A));
BOX_LIST(2).XY_NEW :=

(Types.COORDINATE(x_start), Types.COORDINATE(y bottom_start_A));
BOX_LIST(2).0BJECT := Shapes.HORIZONTAL;
BOX_LIST(2).COLOR := Graphics.status_box_color;

-~ define left side of status_box
BOX_LIST(3).XY_OLD :=
(Types.COORDINATE(x_start), Types.COORDiNATE(y_top_start_A));
BOX_LIST(3).XY_NEW :=
(Types.COORDINATE(x_start), Types.COORDINATE(y_top start_A));
BOX_LIST(3).0BJECT := Shapes.VERTICAL;
BOX_LIST(3).COLOR := Graphics.status_box_color;

-- define right side of status_box
BOX_LIST(4).XY_OLD :=
(Types.COORDINATE(x_end), Types.COORDINATE(y top_start_A));
BOX_LIST(4).XY_NEW :=
(Types.COORDINATE(x_end), Types.COORDINATE(y top_start_A));
BOX_LIST(4).0BJECT := Shapes.VERTICAL;
BOX_LIST(4).COLOR := Graphics.status_box_cclor;
exception
when others => Debug_l0.Put_Line("Exception raised in Status.Initialize");
end Initialize;

procedure Update_Box(NEXT_MODE : MODE_TYPE) is

-

--| SUBPROGRAM BODY : Status.Update.Update_Box

|

--| A procedure which updates the four objects which represent the status_box
--| surrounding one of the modes.

OFFSET : Types.WORD;

begin
Time_Stamp.Log(0078); --$TP(0078) Status.Update Box start
if NEXT_MODE = AUTOMATIC then -- draw status_box at ‘automatic’

BOX_LIST(1).XY_NEW.Y := Types.COORDINATE(y top_start_A);
BOX_LIST(2).XY_NEW.Y := Types.COORDINATE(y_bottom_start A);
BOX_LIST(3).XY_NEW.Y := Types.COORDINATE(y_top_start_A);
BOX_LIST(4).XY_NEW.Y := Types.COORDINATE(y_top_start_A);

else -+ draw status_box at ‘manual’
BOX_LIST(1).XY_NEW.Y := Types.COORDINATE(y_top_start_M);
BOX_LIST(2).XY_NEW.Y := Types.COORDINATE(y_bottom_start_M);

-170-

Distributed Issues Final Report

BOX_LIST(3).XY_NEW.Y := Types.COORDINATE(y_top start M);
BOX_LIST(4).XY_NEW.Y := Types.COORDINATE(y top_start M);
end if;

-- Rendezvous with Graphics to draw new status_box

Time_Stamp.Log(0079); --$TP(0079) Status.Update_Box rendezvous with Graphics start
Graphics.Display.Move(MOVE_PRIORITY, BOX_LIST(Types.WORD_INDEX range box_start..box_end));
Time_Stamp.Log(008. --$TP(0080) Status.Update_Box rendezvous with Graphics end

-- Update status_box lists

for 1 in Types.WORD_INDEX range box_start .. box_end loop
BOX_LIST(I).XY_OLD := BOX_LIST(I).XY_NEW;
end loop;
Time_Stamp.Log(0081); --$TP(0081) Status.Update_Box end
end Update_Box;

procedure Display _Digits(NEXT_DATA : in out Types.WORD;
STAT : STATUS_TYPE) is

o
--| SUBPROGRAM BODY : Status.Update.Display _Digits

-

-+ A procedure which takes the DATA_OLD numbers, divides by 10 to get a

--] single digit. That digit is used as an index into Shapes.NUMERIC, which
--] holds values to draw that number for Graphics. It updates DATA_OLD in the
--| process.

-

DIGIT : Types.WORD;

STAT_X_LOC : Types.COORDINATE;

begin
Time_Stamp.Log(0082); --$TP(0082) Status.Display Digits start

-- Erase previous data
for I in 1 .. Config.statistics_length loop
DATA_OLD(STAT,1).COLOR := Graphics.background_color;
WORK_LIST(Types.WORD_INDEX(1)) := DATA_OLD(STAT,I);

end loop;

Time_Stamp.Log(0083); --$TP(0083) Status.Display _Digits rendezvous with Graphics(1) start
Graphics.Display.Move(MOVE_PRIORITY,WORK_LIST);

Time_Stamp.Log(0084); - 3TP(0084) Status.Display Digits rendezvous with Graphics(1) end

-- Move new into old, then display

STAT_X_LOC := base_x;
for I in reverse 1 .. Config.statistics_length loop

-171-

Distributed Issues Final Report

DIGIT := NEXT_DATA mod 10; -- get rightmost digit
DATA_OLD(STAT,1).0BJECT:= Shapes.NUMERICCINTEGER(DIGIT));
DATA_OLD(STAT,1).COLOR := Graphics.status_color;
DATA_OLD(STAT,1).XY_NEW.X := STAT_X_LOC;

STAT_X_LOC := STAT_X_LOC - Shapes.number_width; -- moving left
WORK_LIST(Types.WORD_INDEX(1)) := DATA_OLD(STAT,I);

NEXT_DATA := NEXT_DATA / 10; -- get next digit
end loop;
Time_Stamp.Log(0085); --$TP(0085) Statii..Display _Digits rendezvous with Graphics(2) start
Graphics.Display.MOVE(MOVE_PRIORITY,WORK_LIST);
Time_Stamp.Log(0086); --$TP(0086) Status.Display _Digits rendezvous with Graphics(2) end
Time_Stamp.Log(0087); --$7-(0087) Status.Display_Digits end
exception

when others =>
Debug_l0.Put_Line("Exception raised in Status.Display _Digits");
end Display_Digits;

-- body of UPDATE task

Begin
Initialize; -- inside task body call to initialize data structures, et. al.
Loop
Time_Stamp.Log(0114); --$TP(0114) Status task start
Time_Stamp.Log(0115); --$TP(0115) Status accept Signal start
accept Signal;
Time_Stamp.Lcg(0088); --$TP(0088) Status accept Signal end
Interrupt_Controi.Enable;
begin -- exception block
loop

Interrupt_Control.Disable;

DISPLAY_REQUIRED := not MOOE_DISPLAYED;

NEXT_MODE := MODE;

MODE_DISPLAYED := TRUE;

Interrupt_Control .Enable;

1f DISPLAY_REQUIRED then -- update rew status_box
Update_Box(NEXT_MODE);

end if;

for 1 in STATUS_TYPE'first .. STATUS_TYPE'last {oop
Interrupt_Control.Disable;
DISPLAY_REQUIRED := not STATUS_CONTROL(1).DISPLAYED;
NEXT_DATA := STATUS_CONTROL(I).DATA;
STATUS_CONTROL(I).DISPLAYED := TRUE;
Interrupt_Control.Enable;
if DISPLAY_REQUIRED then

Display_Digits(NEXT_DATA,!;;

end if;

end loop;

Interrupt_Control.Disable;

REQ_COUNT := REQ_COUNT - 1;

-172-

Distributed Issues Final Report

exit when REQ_COUNT = 0Q;
Interrupt_Control.Enable;
end loop;
Time_Stamp.Log(0089); --$TP(0089) Status task end
exception
when others => Debug_I0.Put_Line(“Exception raised in Status task");
end;
end loop;
end Update_Type;

end Status;

Distributed Issues Final Report

--% UNIT:

--% Effects:
--% Modifies:
--% Requires:
--% Raises:
--% Engineer:

Sync Package Spec. --
No current use. Will provide greater synchronize in futr.--
No global data is modified. --
No initialization is required. --
No explicitly raised exceptions are propagated. --
T. Griest. --

--| PACKAGE SPEC : Sync

-l
|

Package Sync contains a time type for use in synchronizing message

--| reception and transferring.

-- Modifications Log

-- 88-11-25 : TEG => Original created.
-- 89-11-22 : MPS => Created the SEQ_TYPE to keep track of messages across

with Types;

the net synchronized with respect to time.

package Sync is

type SEQ_TYPE is new Types.WORD_INDEX;
end Sync;

-174-

Distributed Issues Final Report

--% UNIT: Target Package Spec. e
--% Effects: Provides structure for BDS Target management. --
--% Modifies: No global data is modified. .-
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--%X Engineer: T. Griest. -

PACKAGE SPEC : Target

!
|
I
| Package Target provides target tracking and display management. In
| addition, it provides the data structures necessary to keep a list
| of targets alive. These data bases are accessed in a guaranteed mutually
| exclusive way, since more than one task accesses the data structures
--| declared here. The TARGET_DATA_TYPE uses a record representation clause
| because the number of allowed targets is a relatively large number. This
| number is defined in the constant Config.max_targets. The clause reduces
| the number of words necessary from three to one. Although pragma PACK
| may have also been used to limit the amount of traffic through the
| rendezvous, it would not have been standard (i.e., the bit ordering may
| have been different from implementation to implementation).
I

-- Modifications Log

-- 88-11-12 : TEG => Original created.

with Types;
with Config;

package Target is

track_stack_size : constant := 3928;
track_data_stack_size : constant := 1506;

subtype TARGET_ID_TYPE is Types.WORD_INDEX range 0..Config.max_targets;

type TARGET_ITEM_TYPE is record -- provides individual target information
TARGET_ID : TARGET_ID_TYPE;
POSITION : Types.POSITION_TYPE;
TARGET_CLASS : Types.TARGET_CLASS_TYPE;

end record;

type TARGET_LIST_TYPE is -- Llist of all available targets items
array(Types.WORD_INDEX range <>) of TARGET_ITEM_TYPE;

type TARGEY_MSG_TYPE is record -- incorang message from Sensor
NUM_TARGETS : Types.WORD_INDEX;

-175-

Distributed Issues Final Report

TARGET_L1ST : TARGET_LIST_TYPE(Types.TARGET_INDEX_TYPE);
end record;

type TARGET_STATUS_TYPE is record

ACTIVE : BOOLEAN;
ENGAGED : BOOLEAN;
CLASS : Types.TARGET_CLASS_TYPE;

end record;
for TARGET_STATUS_TYPE use record
ACTIVE at O range 0..0;
ENGAGED at 0 range 1..1;
CLASS at O range 2..3;
end record;

type TARGET_DATA_TYPE is record

STATUS : TARGET_STATUS_TYPE;
POSITION_NEW : Types.POSITION_TYPE;
POSITION_OLD : Types.POSITION_TYPE;

end record;

type TARGET_DATA_LIST_TYPE is -- used to communicate with Rocket.Control
array(Types.TARGET_INDEX_TYPE) of TARGET_DATA_TYPE;

task type Track_Type is
entry Start;
pragma PRIORITY(Config.track_priority);
end Track_Type;
for Track_Type’STORAGE_SIZE use INTEGER(Config.bytes_per_storage_unit *
track_stack_size);
Track : Track_Type;

task type Track_Data_Type is
entry Put(DATA : in TARGET_DATA_LIST_TYPE; -- put new list
NEXT_ENGAGE ¢ out TARGET_ID_TYPE; -- get new engagement
NEXT_DISENGAGE : out TARGET_ID_TYPE); -- and disengagement

entry Get(DATA : out TARGET_DATA_LIST_TYPE; -- get new list
NEXT_ENGAGE : in TARGET_ID_TYPE; -- put new engagement
NEXT_DISENGAGE : in TARGET_ID_TYPE); -- and disengagement

pragma PRIORITY(Config.track data_priority);
end Track_Data_Type;
for Track_Data_Type’STORAGE_SI2E use INTEGER(Config.bytes_per_storage_unit *
track_data_stack_size);
Track_Data : Track_Data_Type;

end Target; -- package specification

-176-

Distributed Issues Final Report

--% UNIT: Target Package Body. --
--%X Effects: Provides structure for BDS Target management. --
--% Modifies: No global data is modified. --
--%X Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. --

PACKAGE BODY : Target

Package Target provides target tracking and display management.

-- Modifications Log

-- 88-12-03 : TEG => Original created.
package body Target is

task body Track_Type is separate;

task body Track_Data_Type is separate;

end Target; -- package body

-177-

Distributed Issues Final Report

==X UNIT: Targ_Sup Task Body Subunit. .-
--% Effects: Provides Simulator motion control for all targets. --
--% Modifies: Modifies TARGETS and TARGET_HISTORY global data. .-
--% Requires: No initialization is required. --
--% Raises: TARGET_CREATE_ERROR if told to create when max exceeded. --
--% Engineer: M. Sperry. .-

TASK BODY : Simulate.Sensor.Targ_Sup

I
!
I
| A task which sends a list to the caller describing new targets and
| targets which have made it past the bottom border of the BDS and thus are
--| considered to have been destroyed since these targets are no longer the
| concern of the BDS. Thase targets are described by not being on
| the list. Note that new targets are created first and then those

| that need to be destroyed are processed. This task is timed so that

| the list is ready only during 100 millisecond intervals. In an attempt

| to generate random numbers, channel two on the timer chip is uced.

I

-- Modifications Log

-- 88-10-25 : MPS => Original created.

-- 89-08-08 : MPS => All references to hardware were made to point to HW_Config.

-- 89-11-29 : MPS => Re-structured Targ_Sup to use calls in body of Sensor.

with Calendar;
with Debug_lO;
with Time_Stamp;
with HW_Config;
with Distrib;
pragma ELABORATE(Calendar, Debug_lO, Time_Stamp, Distrib);

separate (Simulate.Sensor)

task body Targ_Sup_Type is

use Calendar; -- for visibility to »-"
use Types; -- for visibility to “/" etc.
CURRENT _NUM_OF _TARGETS : Types.WORD_INDEX; -+ local count of targets
TARGET_COUNTER : Types.WORD_INDEX; -- Target index for array
TEMP : Types.POSITION_TYPE; -- for fixed compiler bug
START_TIME : Calendar.TIME;
DELAY_PERIOD : DURATION;
NEW_YARGET 1D : Types.TARGET_INDEX_TYPE;

-178-

Distributed Issues Final Report

-- Targ_Sup task body

begin
CURRENT_NUM_OF_TARGETS := 0; -- no targets - yet.
Initialize;

-- Take the time.

START_TIME := Calendar.Clock;
loop
Time_Stamp.Log(0092); --$1P(0092) Targ_Sup task start
START_TIME := START_TIME + Config.interval;
-- Check number of Targets; if less than maximum, then add a new
-- Target to the list.
if CURRENT_NUM_OF_TARGETS < Distrib.NUM_TARGETS then
NEW_TARGET_ID := Get_New_ID;
Activate_Target(NEW_TARGET_ID); -- initializes TARGETS and TARGET_HISTORY
end if;
-- Move each target.
for [0 in Types.TARGET_INDEX_TYPE toop
if TARGETS(ID).ACTIVE then
Get_New_Position(ID); -- updates TARGETS(ID).POSITION
end if;
end loop;
-- See if any targets made it to the enemy line.
-- These targets are no longer the concern of the BDS. They
-- are deleted from the list.
for ID in Types.TARGET_INDEX_TYPE loop
Interrupt_Control.Disable;
if TARGETS(ID).ACTIVE then
if TARGETS(ID).POSITION.Y < Config.launch_y then
CURRENT_NUM_OF _TARGETS := CURRENT_NUM_OF_TARGETS - 1;
TARGETS(CID).ACTIVE := FALSE;
end if;
end if;
Interrupt_Control .Enable;
end loop;

-- Move the list into the target list kept by the target spec.
Time_Stamp.Log(0093); --$TP(0093) Targ_Sup accept Next_Target_Msg start
accept Next_Target Msg(DATA : out Target.TARGET _MSG_TYPE) do

TARGET_COUNTER := 0;
for 1D in Types.TARGET_INDEX_TYPE loop

-179-

Distributed Issues Final Report

Interrupt_Control.Disable;
if TARGETS(ID).ACTIVE then
TARGET_COUNTER := TARGET_COUNTER + 1;
TEMP := TARGETS(ID).POSITION; -- fixed compiler code bug
DATA.TARGET_LIST(TARGET_COUNTER).POSITION := TEMP;
DATA.TARGET_LIST(TARGET_COUNTER).TARGET_CLASS :=
TARGETS(ID).TARGET_CLASS;
DATA.TARGET_LIST(TARGET_COUNTER).TARGET_ID := ID;
end if;
Interrupt_Control.Enable;
end loop;

-- Update number of active targets in the BDS.
CURRENT_NUM_OF _TARGETS := TARGET_COUNTER;
DATA.NUM_TARGETS := TARGET_COUNTER;
end Next_Target_Msg;
Time_Stamp.Log(0094); --$TP(0094) Targ_Sup accept Next_Target_Msg end

-- Schedule next list out.
DELAY_PERIOD := START_TIME - Calendar.Clock;
if DELAY_PERIOD < 0.0 then
START_TIME := Calendar.Clock;

end if;
Time_Stamp.lLog(0095); --$TP(0095) Targ_Sup end
delay DELAY_PERIOD;
end loop;
-- accept Clock(Time : in Sync.TIME_TYPE); --T8D

end Targ_Sup_Type;

- 180-

Distributed Issues Final Report

--% UNIT: Track Task Body Subunit. -
--% Effects: Provides ail target tracking and display for BDS. --
--X Modifies: No global data is modified. -
--% Requires: No initialization is required. -
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. -

TASK BODY : Target.Track

I
I
|
| The TRACK task is used to control all of the target display information.
| 1t accepts data from the Sensor and maintains it for the Rocket.Control
| task. It is responsible for accepting the information on the targets
| and giving that information (in the form of a Graphics.WORK_LIST) to
--| the Graphics task. This routine can be contrasted to Rocket.Control which
| performs many similiar functions for the rockets.

| Unlike the Rocket.Control task however, there is no intermediate buffer

| task which will allow for schedule slippage Like the one between the

| Rocket.Control and the Simulate.RDL.Rock_Sup task.

| There is a timing loop done in this task since the rest of the system

| derives its timing from this task and the Rocket.Control task. It contains

| its own timing mechanism so that if one of the tasks (or possibly another

| processor) goes down, the entire BDS won’t be locked up.

I

-- Modifications Log

-- 88-10-04 : TEG => Orignal created.

with Graphics;
with Shapes;
with Interrupt_Control;
with Grid_to_Pixel;
with Simulate;
with Debug_l0;
with Status;
with Time_Stamp;
pragma ELABORATE(Graphics,Shapes, Interrupt_Control,Grid_to_Pixel,
Simulate, Debug_ [0, Status, Time_Stamp);

separate (Target)
task body Track_Type is

use Types;

package Sensor renames Simulate.Sensor; -- make simulation transparent
use Types; -- for operators only

TARGET_MSG : TARGET_MSG_TYPE;

MOVE_TARGETS : Graphics.MOVE_LIST_TYPE(Types.TARGEY_INDEX_TYPE);
MOVE_INDEX : Types.WORD_INDEX;

-181-

Distributed Issues Final Report

DESTROYED : Types.WORD;

CREATED : Types.WORD;

PIXEL_POINT : Shapes.PIXEL;

TARGETS : TARGET_DATA_LIST_TYPE;

MSG_INDEX : Types.WORD_INDEX;

NEXT_ENGAGED : Types.WORD_INDEX; -- 0 if no new engagement
NEXT_DISENGAGED : Target.TARGET_ID_TYPE;-- keep track of disengagements
COLOR : Graphics.COLOR_TYPE;

ENGAGE_FLAG : BOOLEAN;

CLASS : Types.TARGET_CLASS_TYPE;

POSITION : Types.POSITION_TYPE; -- temp for making changes

ESCAPED_TARGETS : Types.WORD; -- targets which made it past the BDS border

begin

accept Start;

INITIALIZATION

for 1 in TARGETS’range loop

TARGETS(1).STATUS := (FALSE,FALSE,UNKNOWN); ~-- init to default

end {oop;

toop
Time_Stamp.Log(0096); --$TP(0096) Track task start
Time_Stamp.Log(0097); --$TP(0097) Track rendezvous with Targ_Sup start
Sensor.Targ_Sup.Next_Target_Msg(TARGET_MSG);
Time_Stamp.Log(0098); --$TP(0098) Track rendezvous with Targ_Sup end

Zero out counters

CREATED := 0;
DESTROYED := 0;
ESCAPED_TARGETS := O;

Maintain history information.
Go through each target to examine its new status
MSG_INDEX := 1;
MOVE_INDEX := 0;
for TARGET_ID in TARGETS'RANGE loop
if TARGETS(TARGET_ID).STATUS.ACTIVE then
if MSG_INDEX > TARGET_MSG.NUM_TARGETS or else
TARGET_MSG.TARGET_LIST(MSG_INDEX).TARGET_ID
/= TARGET_ID then -- target destroyed

Target has been destroyed, keep local accumulation of destroyed
targets, and add to list for Display task to erase target.

DESTROYED := DESTROYED + 1;

1f this target has escaped the BDS, count it in the targets which escaped.

-182-

Distributed Issues Final Report

if TARGETS(TARGET_ID).POSITION_NEW.Y <= Config.launch_y then
ESCAPED_TARGETS := ESCAPED_TARGETS + 1;
end if;

-- To mark as inactive : (ACTIVE => FALSE, ENGAGED => FALSE, CLASS => UNKNOWN)
TARGETS(TARGET_ID).STATUS := (FALSE, FALSE, Types.UNKNOWN);
MOVE_INDEX := MOVE_INDEX + 1;

PIXEL_POINT := Grid_To_Pixel(TARGETS(TARGET_ID).POSITION_NEW);
COLOR := Graphics.background_color;

MOVE_TARGETS(MOVE_INDEX) := (PIXEL_POINT,
PIXEL_POINT,
Shapes.TARGET,
COLOR);
else -- move the target

-- Found a current existing target in the latest sensor report,
-- update target information and add it to move list.

POSITION := TARGET_MSG.TARGET_LIST(MSG_INDEX).POSITION;
MOVE_INDEX := MOVE_INDEX + 1;
CLASS := TARGETS(TARGET_ID).STATUS.CLASS;
ENGAGE_FLAG := TARGETS(TARGET_ID).STATUS.ENGAGED;
COLOR := Graphics.target_color(CLASS, ENGAGE_FLAG);
MOVE_TARGETS{MOVE_INDEX) :=
(XY_OLD => Grid_to_Pixel(TARGETS(TARGET_ID).POSITION_NEW),
XY_NEW => Grid_to_Pixel(POSITION),
OBJECT => Shapes.TARGET,
COLOR => COLOR
);
TARGETS(TARGET_1D).POSITION_OLD := TARGETS(TARGET_ID).POSITION_NEW;
TARGETS(TARGET_ID).POSITION_NEW := POSITION;
MSG_INDEX := MSG_INDEX + 1;
end if; -- new/old target check
else -- this target wasn’t previously active
if MSG_INDEX <= TARGET_MSG.NUM_TARGETS and then
TARGET_MSG.TARGET_LIST(MSG_INDEX).TARGET_ID
= TARGET_ID then -- new target

-- New Target has been created, set status and put it on display

CREATED := CREATED + 1;
-- mark as active
TARGETS(TARGET_I0).STATUS :=

(TRUE, -- ACTIVE

FALSE, -- Engaged

TARGET _MSG.TARGET_LIST(MSG_INDEX).TARGET_CLASS); -- class
TARGETS(TARGET_ID).POSITION_OLD := -- set both old and new

TARGET_MSG.TARGET_LIST(MSG_INDEX).POSITION;
TARGETS(TARGET_ID) .POSITION_NEW :=

-183-

Distributed Issues Fina1 Report

TARGET_MSG.TARGET_LIST(MSG_INDEX).POSIiTION;

MOVE_INDEX := MOVE_INDEX + 1;

CLASS := TARGETS(
ENGAGE_FLAG := TA
COLOR := Graphics
MOVE_TARGETS(MOVE

(XY_OLD
XY_NEW
OBJECT
COLOR
);
MSG_INDEX := MSG_
end if;
end if;
end loop;

Now update status if a

if CREATED /= DESTROYED
Interrupt_Control.Dis.
Status.STATUS_CONTROL
Status.STATUS_CONT
Status.STATUS_C.¢TROL
Status.STATUS_CONTROL

Status.STATUS_CONTROL
Status.REQ_COUNT := S
if Status.REQ_COUNT =
Time_Stamp.Log(0099);

Status.Update.Signa
Time_Stamp.Log(0100);
end if;

TARGET_ID).STATUS.CLASS;
RGETS(TARGE1_ID).STATUS .ENGAGED;
.target_color(CLASS, ENGAGE_FLAG);

_INDEX) :=

=> Grid_to_Pixel (TARGETSCTARGET_ID).POSITION_OLD),
=> Grid_to_Pixel (TARGETS(TARGET_ID).POSITION_NEW),
=> Shapes.TARGET,

=> COLOR

INDEX + 1;
-- end of new target check
-- active check

ny created or destroyed

or DESTROYED > O then
able;
(Status.TRACKED).DATA :=
ROL(Status.TRACKED).DATA + (CREATED - DESTROYED);
(Status.TRACKED).DISPLAYED := FALSE;
(Status.DESTROYED).DATA :=
Status.STATUS_CONTROL(Status.DESTROYED).DATA +
DESTROYED - ESCAPED_TARGETS;
(Status.DESTROYED).DISPLAYED := FALSE;
tatus.KEQ_COUNT + 1;
1 then
--$TP(0099) Track rendezvous with Status start
L;
--$TP(0100) Track rendezvous with Status end

Interrupt_Control.Enable;

end if;

Time_Stamp.Log(0101);

--$TP(0101) Track rendezvous with Track_Data start

Target.Track_Data.Put(TARGETS,NEXT_ENGAGED,NEXT_DISENGAGED);

Time_Stamp.Log(0102);

-- send copy to Rocket.Clontrol
--$TP(0102) Track rendezvous with Track_Data end

if NEXT_ENGAGED > 0 then

TARGETS(NEXT_ENGAGED)
end if;

.STATUS.ENGAGED := TRUE; -- set engaged

if NEXT_DISENGAGED - O then
TARGETS(NEXT_DISENGAGED).STATU..ENGAGED := FALSE;

end if;
Time_Stamp.Log(0103);

--$TP(0103) Track rendezvous with Graphics start

Graphics.Display.Move(Graphics.LOW, MOVE_TARGETS(1..MOVE_INDEX));

Time_Stamp.Log(0104);
Time_Stemp.Log(0105);

--$TP(0104) Track rendezvous with Graphics end
--$TP(0105) Track task end

-184-

e

S =S

Distributed Issues Final Report

end loop;
exception
when others =>
Debug_I[0.Put_Line("TRACK termination due to exception.');
end Track_Type;

-185-

Distributed Issues Final Report

-=% UNIT: Track_Data Task Subunit. --
--% Effects: Provides buffering of target tracking data between the --
--% Track task and the Control task for rocket engagement. --

--% Modifies: No global data is modified. --
--% Requires: No initialization is required. .-
--% Raises: No explicitly raised exceptions are propagated. .-
--% Engineer: T. Griest. .-

TASK BODY : Target.Track_Data

|

I

I

| The Track_Data task is used to buffer the most recent target list

| from the Target.Track task and provide it to the Rocket.Control

| task. It also buffers new engagements or disengagements from the

| Rocket.Controt task to notify the Target.Track task that a new target
--| has been engaged or an old target destroyed.

| Note that only one new target can be engaged every update interval.

| If the NEXT_ENGAGE parameter is 0, this is an invalid TARGET_ID, and

| implies that no new target is engaged.

| Although there is a guard used here, it is only used for the first

| rendezvous from Rocket.Control. This helps the BDS system to achieve a

| known initial state and asynchronous timing.

|

-- Modifications Log

-- 88-10-11 : TEG => Original created.

with Time_Stamp;
with Interrupt_Control;
pragma ELABORATE(Time_Stamp, Interrupt_Control);

separate (Target)

task body Track_Data_Type is
use Types;

BUFFERED_DATA : Target.TARGET_DATA_LIST_TYPE;
BUFFERED_ENGAGE : Target.TARGET_ID_TYPE;
BUFFERED_DISENGAGE : Target.TARGET_ID_TYPE;
DATA_COUNT : Types.WORD := O;
begin
-- Initialize local copy of data
-- initialize all target status to:
-- (ACTIVE => FALSE, ENGAGED => FALSE, CLASS => UNKNOWN)

BUFFERED_ENGAGE := 0; -- default is no new engagement

-186-

Distributed Issues Final Report

for 1 in BUFFERED_DATA’range loop
BUFFERED_DATA(I).STATUS := (FALSE, FALSE, Types.UNKNOWN):
end loop;
Loop
select
accept Put(DATA : in TARGET_DATA_LIST_TYPE;

NEXT_ENGAGE : out TARGET_ID_TYPE;

NEXT_DISENGAGE : out TARGET_ID_TYPE) do
Time_Stamp.Log(0106); --$TP(0106) Trackdat accept Put start
Interrupt_Control.Disable; -- BUGFIX for RTE
BUFFERED_DATA := DATA;

Interrupt_Control .Enable;
NEXT_ENGAGE := BUFFERED_ENGAGE;
NEXT_DISENGAGE := BUFFERED_DISENGAGE;
DATA_COUNT := 1;
Time_Stamp.Log(0107); --$7P(0107) Trackdat accept Put end
end Put;
or
when DATA_COUNT > 0 =>

accept Get(DATA : out TARGET_DATA_LIST_TYPE;
NEXT_ENGAGE : in TARGET_ID_TYPE;
NEXT_DISENGAGE : in TARGET_ID_TYPE) do
Time_Stamp.Log(0108); --$TP(0108) Trackdat accept Get start
Interrupt_Control.Disable; -- BUGFIX for RTE

DATA := BUFFERED_DATA;
Interrupt_Control.Enable;
BUFFERED_ENGAGE := NEXT_ENGAGE;
BUFFERED_DISENGAGE := NEXT_DISENGAGE;
DATA_COUNT := 1;
Time_Stamp.Log(0109); --$TP(0109) Trackdat accept Get end
end Get;
end select;
end {oop;
end Track_Data_Type;

-187-

Distributed Issues Final Report

--% UNIT: Traject Function Spec. .-
--% Effects: Computes rocket motion based on previous motion and --
--% aimpoints received in guidance messages. --

--% Modifies: No global data is modified. .-
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: R. Chevier. --

--| SUBPROGRAM SPEC : Traject

-

--| Function Traject takes the current rocket information including the
--| direction it is headed in and determines the new absolute position
--1 of the rocket. This work is done in a three dimensional system.

-- Modifications Log

-- 88-10-29 : TEG => Original created.
-- 89-08-29 : MPS => Original replaced by R. Chevier’s version.

with Types;
package Traject is

procedure Get_New_Position(ROCKET_ID : Types.WORD_INDEX;

AIMPOINT : Types.AIMPOINT_TYPE;
POS : out Types.POSITION_TYPE);
end Traject;
-188-

Distributed Issues Final Report

--% UNIT: Traject Function Body. -
--% Effects: Computes rocket motion based on previous motion and --
--% aimpoints received in guidance messages. --

--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--X Raises: No explicitly raised exceptions are propagated. --
--% Engineer: R, Chevier -

--| SUBPROGRAM BODY : Traject

-~ Function Traject: Is the trajectory planner for rockets and takes an

--] Azimuth, Elevation X,Y,2Z position and constant velocity and returns a new

-~} rocket position.

-- Modifications Log
-- 88-12-01 : TEG => Qriginal created.
-- 89-08-29 : MPS => Replaced original with R. Chevier’s version.
-- 89-09-07 : MPS => Added the Get_New_Position function
with Config;
with Parameter_Data_Base;
with Rocket;
with Math;
with Time_Stamp;
pragma ELABORATE(Math);

package body Traject is

use Types; -- for operators
use Math; -- for faster fixed math

bam_converter : constant Types.LONG_FIXED := 182.03125;

type DRIFT_RECORD_TYPE is record
SIN_AZIMUTH : Types.LONG_FIXED := 0.0;
SIN_ELEVATION : Types.LONG_FIXED 0.0;
COS_AZIMUTH : Types.LONG_FIXED := 0.0;
COS_ELEVATION : Types.LONG_FIXED := 0.0;
end record;

type VELOCITY_RECORD_TYPE is record

X : Types.LONG_FIXED := 0.0;
Y : Types.LONG_FIXED := 0.0;
Z : Types.LONG_FIXED := 0.0;

end record;

-189-

type LOCAL_ROCKET_REC is
ACTIVE : BOOLEAN :=
POSITION : Types.POSIT
VELOCITY : VELOCITY_RE
ANGLE : Types.AIMPO
FUEL : Types.LONG_|
end record;

type ROCKET_HISTORY_REC i
LOCAL_ROCKET : LOCA
GUIDANCE : Rock

Distributed Issues Final Report

record
FALSE;
10N_TYPE;
CORD_TYPE;
INT_TYPE;
FIXED;

s record
L_ROCKET_REC;
et .ROCKET_GUIDE_TYPE;

ROCKET_DEFAULTS : Parameter_Data_Base.ROCKET_PARAMETER_TYPE;

DRIFT : DRIF
DELTA_T : Type
end record;

type ROCKET_HISTORY_ARRAY
ROCKET_HISTO

ROCKET_HISTORY : ROCKET_H

procedure Initialize(INDI

begin
INDIVIDUAL _ROCKET_HISTO!
INDIVIDUAL_ROCKET_HISTOI
INDIVIDUAL_ROCKET_HISTO

INOIVIDUAL_ROCKET_HISTO!
INDIVIDUAL_ROCKET_HISTOI

end Initialize;

procedure Turn_Rocket
(FUEL
ROCKET_ANGLE
BDS_ANGLE
DELTA_T
TURN_RATE
TURN_BURN_RATE

MAX_TURN : Types
DELTA_ANGLE : Types
FUEL_USED : Types
BURN_T IME : Types

BAMS_TURNED : Types
DEGREES_TO_TURN : Types

begin
Time_Stamp.Log(0118);
DELTA_ANGLE := Types.LO

T_RECORD_TYPE;
s.RATE_TYPE := Types.RATE_TYPE(Config.interval);

is array(Types.ROCKET_INDEX_TYPE) of
RY_REC;

ISTORY_ARRAY;

VIDUAL_ROCKET_HISTORY : in out ROCKET_HISTORY_REC) is

RY.LOCAL_ROCKET.ACTIVE := TRUE;
RY.LOCAL_ROCKET.VELOCITY := (0.0,0.0,0.0);
RY.LOCAL_ROCKET.ANGLE := (Config.launch_azimuth,
Config.launch_elevation);
RY.LOCAL_ROCKET.FUEL := Parameter_Data_Base.c_fuel;
RY.LOCAL_ROCKET.POSITION := (Config.launch_x,
Config.launch_y,Config.launch_z);

¢ in out Types.LONG_FIXED;
: in out Types.BAM;

: Types.BAM;

: Types.RATE_TYPE;

: Types.LONG_FIXED;

: Types.LONG_FIXED) is

.LONG_FIXED;
.LONG_FIXED;
.LONG_FIXED;
.LONG_FIXED;
.LONG_FIXED;
.LONG_FIXED;

--Turn_Rocket

--$TP(0118) Traject.Turn_Rocket start
NG_FIXED(BDS_ANGLE) - Types.LONG_FIXED(ROCKET_ANGLE);

-190-

.-

Distributed Issues Final Report

if DELTA_ANGLE /= 0.0 and FUEL > 0.0 then -- don’t turn it if told not to
MAX_TURN := DELTA_T * TURN_RATE;
-- 1f the rotation in this iteration turns the rocket too far
-- then calculate only the fuel needed to rotate the rocket
-- the required amount.
DEGREES_TO_TURN := abs DELTA_ANGLE / bam_converter;
if DEGREES_TO_TURN < MAX_TURN then
BURN_TIME := abs DEGREES_TO_TURN / TURN_RATE;
FUEL_USED := TURN_BURN_RATE * abs DEGREES_TO_TURN;
ROCKET_ANGLE := BDS_ANGLE;

--Put("BDS Angle :"); Int_lO.Put(BDS_ANGLE); New_Line;
--Put("Rocket Angle :%); Int_l0.Put(ROCKET_ANGLE); New_Line;
--Put("Delta Angle :*); Long_Fxd_l10.Put(DELTA_ANGLE); New_Line;
--Put("Turn Rate :*); Long_Fxd_lO0.Put(TUPN_RATE); New_Line;
--Put("Turn Burn Rate :"); Long_Fxd_I10.PUt(TURN_BURN_RATE);New_Line;
--Put("Burn Time :"); Long_Fxd_l0.Put(BURN_TIME); New_Line;

- -Put(“Completed Turn Fuel:"); Long_Fxd_l0.Put(FUEL_USED); New_Line;

else
-- Or if the time step was not large enough for rotation
-- completion then calculate FUEL used and new ANGLE based on
-- rotation completed during this step.
FUEL_USED := TURN_BURN_RATE * MAX_TURN;
if DELTA_ANGLE < 0.0 then -- subtract from current direction
BAMS_TURNED := MAX_TURN * bam_converter;
ROCKET_ANGLE := ROCKET_ANGLE - Types.BAM(BAMS_TURNED);
else -- add to current direction
BAMS_TURNED := MAX_TURN * bam_converter;
ROCKET_ANGLE := ROCKET_ANGLE + Types.BAM(BAMS_TURNED);
end if;
end if;
FUEL := FUEL - FUEL_USED;
if FUEL < 0.0 then
FUEL := 0.0;
end if;
end if;
Time_Stamp.Log(0119); --$TP(0119) Traject.Turn_Rocket end
end Turn_Rocket;

procedure Calc_Trajectory

(LOCAL_ROCKET : in out LOCAL_ROCKET_REC;

GUIDANCE : Rocket.ROCKET_GUIDE_TYPE;

ROCKET_DEFAULTS : Parameter_Data_Base.ROCKET_PARAMETER_TYPE;
ORIFT : DRIFT_RECORD_TYPE;

DELTA_T : Types.RATE_TYPE) is

-191-

Distributed Issues Final Report

drag : constant Types.LONG_FIXED := 0.984375;

-- roughly 2% of velocity per iteration
gravity : constant Types.LONG_FIXED := 9.80665;
VX : Types.LONG_FIXED := (LOCAL_ROCKET.VELOCITY.X);
vy : Types.LONG_FIXED := (LOCAL_ROCKET.VELOCITY.Y);
v2 ¢ Types.LONG_FIXED := (LOCAL_ROCKET.VELOCITY.2);
X : Types.LONG_FIXED :=Types.LONG_FIXED(LOCAL_ROCKET.POSITION.X);
Y : Types.LONG_FIXED :=Types.LONG_FIXED(LOCAL_ROCKET.POSITION.Y);
Z : Types.LONG_FIXED :=Types.LONG_FIXED(LOCAL_ROCKET.POSITION.Z);
ELEVATION : Types.BAM := Types.BAM(LOCAL _ROCKET.ANGLE.ELEVATION);
AZIMUTH : Types.BAM := Types.BAM(LOCAL_ROCKET.ANGLE.AZIMUTH);
FUEL : Types.LONG_FIXED := LOCAL_ROCKET.FUEL;

FORWARD_VELOCITY : Types.LONG_FIXED;

THRUST : Types.LONG_FIXED;
TOTAL_MASS : Types.LONG_FIXED;
DRAG_FORCE : Types.LONG_FIXED;
AY ,AX,AZ : Types.LONG_FIXED;
SIN_ELEVATION : Types.LONG_FIXED;
COS_ELEVATION : Types.LONG_FIXED;
COS_AZIMUTH : Types.LONG_FIXED;
SIN_AZIMUTH : Types.LONG_FIXED;
TEMP_VAL : Types.LONG_FIXED;
begin -- Calc_Trajectory
Time_Stamp.Log(0120); --$TP(0120) Traject.Calc_Position start

SIN_ELEVATION := Math.Sin(ELEVATION);
SIN_AZIMUTH := Math.Sin(AZIMUTH);
COS_ELEVATION := Math.Cos(ELEVATION);
COS_AZIMUTH Math.Cos(AZIMUTH);
TEMP_VAL := VX*VX + VY*VY + VZ*VZ;
FORWARD_VELOCITY := Math.Sqrt(TEMP_VAL);

-- Check amoun: of fuel left.

if FUEL <= 0.0 then

THRUST := 0.0;
else
THRUST := ROCKET_DEFAULTS.THRUST;
end if;
TOTAL_MASS := ROCKET_DEFAULTS.MASS + FUEL;
--Put("Thrust 1"); Long_Fxd_lC.Put(THRUST); New_Line;

--Put("Drag_Force :"); Long_Fxd_lO.PUT(DRAG_FORCE); New_Line;
--Put("Cos_Elev :"); Long_Fxd_10.Put(COS_ELEVATION); New_Line;
--Put("Sin_Az :"); Long_Fxd_10.PUt(SIN_AZIMUTH); New_Line;
--Put("Total_Mass :"); Long_Fxd_l10.Put(TOTAL_MASS); New_Line;

COMPUTE ACCELERATION IN EACH AXIS
DRAG_FORCE := 0.0; -- for now, null out drag acceleration

AY := ((THRUST - DRAG_FORCE) * COS_ELEVATION) * SIN_AZIMUTH;
AY := AY / TOTAL_MASS;

-192-

Distributed Issues Final Report

AX := ((THRUST - DRAG_FORCE) * COS_ELEVATION) * COS_AZIMUTHK;
AX = AX / TOTAL_MASS;

AZ := (THRUST - DRAG_FORCE) * SIN_ELEVATION;

AZ := AZ - TOTAL_MASS * gravity;

AZ := AZ / TOTaL_MASS,

- lose % of velocity per/iteration due to drag

LOCAL_ROCKET.VELOCITY.X :
LOCAL_ROCKET.VELOCITY.Y :
LOCAL_ROCKET.VELOCITY.Z :

DELTA_T * AX + VX * drag;
DELTA_T * AY + VY * drag;
DELTA_T * AZ + VZ * drag;

-- Update position of rocket
X := X + DELTA_T * LOCAL_ROCKET.VELOCITY.X;
LOCAL_ROCKET.POSITION.X := X;
Y := Y + DELTA_T * LOCAL_ROCKET.VELOCITY.Y;
LOCAL_ROCKET.POSITION.Y := Y;
Z :=Z + DELTA_T * LOCAL_ROCKET.VELOCITY.Z;
LOCAL_ROCKET.POSITION.Z := Z;

-- New_Line;

-- Put_Line(" Velocity Acceleration");

-- Long_Fxd_l0.Put(LOCAL_ROCKET.VELOCITY.X,6,2,0);
-- Long_Fxd_l0.Put(Ax,6,2,0);

-~ Put_Line(" x";

-- Long_Fxd_I0.Put(LOCAL_ROCKET.VELOCITY.Y,6,2,0);
-- Long_fxd_l10.Put(AY,6,2,0);

-- Put_tine(" Y";

-- Llong_Fxd_l0.Put(LOCAL_ROCKET.VELOCITY.Z,6,2,0);
-- lLong_fxd_l0.Put(AZ,6,2,0);

-- Put_Line(® ");

-- New_Line;

-- Check for impacts to speed up code

if 2 > 0.0 then

-- When finished with the calculation update the current mass.
LOCAL_ROCKET.FUEL := FUEL - DELTA_T * ROCKET_DEFAULTS.BURN_RATE;
if LOCAL_ROCKET.FUEL < 0.0 then

LOCAL_ROCKET.FUEL := 0.0;
end if;

-- Calculate rocket turns,

Turn_Rocket (LOCAL_ROCKET.FUEL,
LOCAL_ROCKET.ANGLE .ELEVATION,
GUIDANCE .AIMPOINT .ELEVATIUN,
DELTA_T, ROCKET_DEFAULTS.TURN_RATE,

-193-

Distributed Issues Final Report

ROCKET_DEFAULTS.TURN_BURN_RATE);
Turn_Rocket (LOCAL_ROCKET.FUEL,

LOCAL_ROCKET .ANGLE.AZIMUTH,
GUIDANCE .AIMPOINT .AZIMUTH,
DELTA_T, ROCKET_DEFAULTS.TURN_RATE,
ROCKET_DEFAULTS.TURN_BURN_RATE);

end if;

Time_Stamp.Log(0121); --$TP(0121) Traject.Calc_Position end

end Calc_Trajectory;

procedure Get_New Position(ROCKET_ID : Types.WORD_INDEX;
AIMPOINT : Types.AIMPOINT_TYPE;
POS : out Types.POSITION_TYPE) is

begin
Time_Stamp.Log(0110); --$TP(0110) Traject Start
if not ROCKET_HISTORY(ROCKET_ID).LOCAL_ROCKET.ACTIVE then
Initialize(ROCKET_KISTORY(ROCKET_ID));

end if;

ROCKET_HISTORY(ROCKET_ID).GUIDANCE .AIMPOINT := AIMPOINT;

Calc_Trajectory(ROCKET_HISTORY(ROCKET_ID).LOCAL_ROCKET,
ROCKET_HISTORY(ROCKET_ID).GUIDANCE,
ROCKET_HISTORY(ROCKET_ID).ROCKET_DEFAULTS,
ROCKET_HISTORY(ROCKET_ID).DRIFT,
ROCKET_HISTORY(ROCKET_ID).DELTA_T);

POS := ROCKET_HISTORY(ROCKET_I[D).LOCAL_ROCKET.POSITION;

if ROCKET_HISTORY(ROCKET_ID).LOCAL_ROCKET.POSITION.Z <= 0.0 then

ROCKET_HISTORY(ROCKET_ID).LOCAL_ROCKET.ACTIVE := FALSE; -- kiltl the rocket

end if;
Time_Stamp.Log(0111); --$TP(0111) Traject end
end Get_New_Position;

end Traject;

-194-

--% UNIT: Types Package Spec. --
--X Effects: Provides general purpose data types. --
--% Modifies: No global data is modified. --
--% Requires: No initialization is required. --
--% Raises: No explicitly raised exceptions are propagated. --
--% Engineer: T. Griest. --

PACKAGE SPEC : Types

!

!

|

| This package contains all the global types needed for the BDS and the

| simutator. The type WORD and its derivatives replace the type INTEGER
--| to increase portability. The type BAM is an acronym for a Binary Angle

| Measurement and the transformation from degrees to BAMs is performed by

| BAMs = 32767/180 * degrees. The BDS and the simulator use three

| dimensional components and the screen (obviously) display of the event

| shows it in two dimensions only.

I

-- Modifications Log

-- 88-10-10 : TEG => Original created.
-- 89-08-29 : MPS => Added definitions for new rocket flight path equations.

with Config;
package Types is

type WORD is range -32765 .. 32767;
for WORD’size use 16;

type WORD_INDEX is range 0 .. 32767;
for WORD_INDEX’size use 16;

subtype ROCKET_INDEX_TYPE is WORD_INDEX range 1..Config.max_rockets;
subtype TARGET_INDEX_TYPE is WORD_INDEX range 1..Config.max_targets;

subtype COORDINATE is Types.WORD;
subtype REL_COORDINATE is Types.WORD;

type METERS is delta 0.125 range -Config.meters_in_battle_area ..
Config.meters_in_battle_area;

type LONG_FIXED is delta 0.015625 range -33_554_432.0..33_554_431.0;
for LONG_FIXED’size use 32;

-- RATE_TYPE is used to compute velocities and accel accurately (2**-16)

-195-

Distributed Issues Final Report

type RATE_TYPE is delta 1.525879E-5 range -32_768.0..32_767.0;
for RATE_TYPE’size use 32;

sqrt_large_number : constant := 2508.0; -- approx sqrt(LONG_FIXED’last)/4
type POSITION_TYPE is record -- for absolute position
X : LONG_FIXED; -- assume battliefield oriented ENU
Y : LONG_FIXED;
pd : LONG_FIXED;

end record;

type BAM is range -32768 .. 32767; -- binary angle measurement 32768/180
-- East North Up origins (0)
type EXTENDED _BAM is new LONG_INTEGER; -- for large calculations

type AIMPOINT_TYPE is record

AZIMUTH : BAM;
ELEVATION : BAM;
end record;

-- T80 - Main Battle Tank

-- SA9 - GASKIN surface to air missle launcher

-- BMP2 - Infantry Combat Vehicle

type TARGET_CLASS_TYPE is (UNKNOWN, T80, SA9, BMP2);

end Types;

-196-

Distributed Issues Final Report

PACKAGE BODY : Distrib

This package body makes calls to the runtime in order to obtain
configuration values which are based on the number of available

I
I
|
--| OPERATION :
|
|
| processors.
I

-- Modifications Log
-- 88-12-05 : TEG => Original Created.
-- 89-12-06 : TEG => Enhanced to support dynamic coniiouration/reconfiguration

package body Distrib is

type BOUND_TYPE is (LOW,HIGH);
subtype GUIDE_RANGE is Types.WORD_INDEX range 1..Distrib.max_guide_tasks;
ROCKET_CONFIG : array (GUIDE_RANGE,GUIDE_RANGE,BOUND_TYPE)

of Types.WORD_INDEX :=
-- if 1 task, all rockets on #1

(1 => (1 => (LOW => 1, HIGH => 20), 2 => (LOW => 1, HIGH => 1)),
-- if 2 tasks, 5 rockets on #1, 15 on #2

2 => (1 => (LOW => 1, HIGH => 5), 2 => (LOW => 6, HIGH => 20)));

-~ The follwing four functions provide configuration information based
-- on operator entered information and system configuration operations.
-- They are provided by the Distributed RunTime Environment

function Get_Num_Rockets return Types.WORD_INDEX;

function Get_Num_Targets return Types.WORD _INDEX;

function Get_Num_Guide_Tasks return Types.WORD_INDEX;

function Get_Master_Status return BOOLEAN;
e ckcLmanive rews oies
-- RESTART is used to stop operation of the 80S and allow the operator
-- setup a different configuration. [t is only called when the MODE

-- button is pressed while the RESET button is held down on the mouse.
-- The Ada body version simply locks up the machine with interrupts disabied.

-197-

Distributed Issues Final Report

pragma [INTERFACE(ASMB6, Get_Num_Guide_Tasks);
pragma INTERFACE_SPELLING(Get_Num_Guide Tasks, “D1DRTE?GETTASKS");

pragma INTERFACE(ASM86, Get_Num_Targets);
pragma INTERFACE_SPELLING(Get_Num_Targets, "D1DRTE?GETTARGETS");

'

... »

pragma INTERFACE(ASM86, Get_Num_Rockets);
pragma INTERFACE_SPELLING(Get_Num_Rockets, "D1DRTE?GETROCKETS");
pragma INTERFACE(ASM86, Get_Master_Status);
pragma INTERFACE_SPELLING(Ge*_Master_Status, "DIDRTE?GETMASTER");
begin
NUM_ROCKETS := Get_Num_Rockets;
NUM_TARGETS := Get_Num_largets;
NUM_GUIDE_TASKS := Get_Num Guide_Tasks;
MASTER := Get_Master_Status;
for 1 in Types.WORD_INDEX range 1..NUM_GUIDE_TASKS loop
Guide_Low (I) := ROCKET_CONFIG(NUM_GUIDE_TASKS,1,LOW);
Guide_High(1) := ROCKET_CONFIG(NUM_GUIDE_TASKS,I,HIGH);
end loop;
end Distrib;

-198-

Distributed Issues Final Report
12 Appendix B - Distributed Runtime Source Code

The source code for the distributed runtime uses an 8086 family assembly language code. It
i$ divided into modules which implement the major functional areas. These include:
Initialization and system configuration, interprocessor synchronization, runtime routines,
network setup, network I/O, distributed task control blocks, and the vendor runtime
interface. Two include files: DA_HW.ASM and DA_DEF.ASM are used to define system

constants and data structures.

-199.

Distributed Issues Final Report

XLIST

AR R A R R R R R R R R)
; FILE: DA_DEF.ASM ;
; Distributed Ada - Definitions ;
H i
; Definitions for system values ;
H H
; Copyright (C) 1989, LabTek Corporation H
R A R R R R R R R R A
DEF_VRTIF_ADDR equ 4000H

EF_addr_size equ 3 ; # of WORDs in Ethernet Address
H
; NETWORK MESSAGE CONTROL FIELD VALUES
; The first 6 fields are constant for ALL network traffic
packet struc
DEF_pkt_dest dw 3 dup (?)
DEF_pkt_source dw 3 dup (?)
DEF_pkt_{ength dw ?
DEF_pkt_sequence dw ?
DEF_pkt_cmd dw ? ; designate type of message
DEF_pkt_TID dw ? ; destinar’ -~ task id
DEF_pkt_entry_ID dw ?
DEF_pkt_my PID dw ? ; source processor [D
DEF_pkt_my TID dw ? ; source task D
DEF_pkt_data dw ? ; data always starts here
packet ends

Offset from List pointer to next node pointers

DEF_next_ptr equ 2 ; offset to next pointer in buffer
DIR_entry struc

DTCB_dir_Local dw ? ; local/distrib runtime flag
DTCB_dir_pid dw ? ; PID for this task

DTCB_dir_TCB dw ? ; pointer to distrib TCB
DTCB_dir_COUNT dw ? ; Counter for task type
DIR_entry ends

DTCB_dir_size equ size DIR_ENTRY ; size of each entry
i

; TCB Offsets

H

DEF_tcb_reply equ 6

DEF_return_addr equ 8

DEF_num_entries equ 12

DEF_entry_table equ 14

; Within each TCB is an entry table
; The table contains a record for each entry with the following fields:

-200-

DEF_entry_rec
DEF_entry_profile_ptr
DEF_entry_wait
DEF_entry_queue

DEF_entry_rec

; CPU Designations

DEF_max_cpus

DEF_alpha
DEF_bravo
DEF _charlie
DEF_NA

caassusassrneneoes
IR R NN RN

PROCESSOR / TASK

struc

dw
dw
dw
ends

TIDs and EIDs by 2.

TASK IDs are unique.

ssseecovsearan e
R R R R R RN N RN N]

l. ;llllllllllll
; / ENTRY IDs
: MNote: PIDs increment by 6,
;

[0S BENEIS BTN I

N 2 O

Distributed Issues Final Report

; maximum number of CPUs

; not applicable (no CPU)

ane
R R R R R R R R R R R R R R R R R

DEF_sync_start
DEF_sync_ready
DEF_sync_continue

DEF_request_entry
OEF_rendezvous_end

DEF_local _call

DEF_ACK

DEF_cold_start

equ
equ
equ

equ
equ

equ

;
; COMMANDS received via messages

0
1
2

; SYNC PHASE packet retry/delay values

i

DEF_retry_times
DEF_sync_delay
DEF_WATCH_DOG_LIMIT

equ
equ
equ

10
100

; some delay between retries
; 10ms per count

-201-

Distributed Issues Final Report

Parameter Passing convention to runtime network msg routines.

Standard Call Frame for [0_Xmit

(This is reverse order of being pushed)

Therefore these values can be used relative to the 8P

xmit struc

dw 2 dup(?);
DEF_PID dw ? ;
DEF_CMD dw ? H
DEF_TID dw ? ;
DEF_ENTRY dw ? ;
DEF_MY_TID dw ? H
DEF_PROFILE dw ? :
DEF_MODE dw ? ;
DEF_PARM_LIST dd ? ;
xmit ends
DEF_xmit_frame equ size xmit

-~ we we

Parameter Constraint Layout

constraint struc
DEF_low_desc dw ?
DEF_high_desc dw ?
DEF_size_desc dw ?
constraint ends
DEF_in equ 1
DEF_out equ 2
DEF_in_out equ 3

pParameter Profile Layout

reserve space for near return and bp
destination processor D

command for this packet

Task for which the command operates

entry ID for the command (if applicable)
originating Task ID

profile pointer (in CS) for entry parameters
current caltling mode (in or out)

pointer (seg/offset) for parameter List

; size of parameter frame

; bit-wise '"or" of "in® & "out"

Se we me we we s

RAANRNAT AR AT r TR Rdwr

* Number of Parameters *
PR 1222222223432 d2 22224234

* PARM1 : Mode *

ARARNXRRANRWAAN RN N AN

* PARM1 : Type/Length *

LA 2222222 sd il alialddds)

’

in, out, or in_out

negative if unconstrained, otherwise
; this is a WORD count

TASK_10D: each block is pointed to by an entry in the
TASK_DIRECTORY which is indexed by the TID. The TID

’
’
’
.
’
’

-202-

Distributed Issues Final Report

H is essentially the task’s priority (with a provision H
H for tasks of the same type to have sequentially lower ;
H priority as they are created. H
‘ ‘
; Sync_Semaphore: The sync semaphore is used to suspend (or resume) H
H execution of the associated task for rendezvous. H
; Reply Pointer: Contains the buffer descriptor of the reply msg. ;
; Number of Entries: provides the number of entries for this task. H
; Entry_Table: The Entry table provides a record for each of the H
; entries defined in the task. The record contains: H
H PROFILE_PTR: pointer to the parameter profile ;
H described above. H
; WAITING : flag indicating that the accepting H

; task is waiting for an entry call H
: for this entry. H
H Queue : Head of buffer descriptor linked to ;
H this entry. H

.LIST

-203-

Distributed Issues Final Report

XLIST
P I PP P
FILE: DA_HW.ASM ;
; Distributed Ada - Hardware Definition Include File ;
: H

: Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA H

'

; Ethernet Board Hardware Configuration

base
vector_number
net_memory_seg
net_memory_size

; LAN Controller

NIC_cr equ
NIC_pstart equ
NIC_pstop equ
NIC_bndy equ
NIC_tpsr equ
NIC_tbcr0 equ
NIC_tber1 equ
NIC_ isr equ
NIC_rsar0 equ
NIC_rsarl equ
NIC_rber0 equ
NIC_rbcri equ
NIC_rcr equ
NIC_tcr equ
NIC_dcr equ
NIC_imr equ

0

Page 0 registers

base
base
base
base
base
base
base
base
base
base
base
base
base
base
base
base

+ 4+ + + 4+ + + o+
W~ O VI NN 9 O

=+ ™e me we ms we we w» wg wa

+ + o+ o+ o+ 4+ 4+

0

— s -
N - O
-

13;
14;
15;

310H ; base address of board
SH ; vector number for board
0DCOOH ; address of ethernet memory
2000H ; 8K bytes

-- control register of NIC

-- page start register

-- page stop register

-- boundary register

-- transmit page start register
-- transmit byte count rgtr hi
-- transmit byte count rgtr lo
-- interrupt status register

-- remote start address rgtr lo
-- remote start address rgtr hi
-~ remote byte count rgtr lo

-- remote byte count rgtr hi

-- receive configuration rgtr
-- transmit configuration rgtr
-- data configuration register
-- interrrupt mask register

; controller page 1 registers - NIC address setup registers
; These registers are written to establish what the actual
; physical address will be.

phys_address_0 equ
phys_address_1 equ
phys_address_2 equ
phys_address_3 equ
phys_address_4 equ
phys_address_5 equ
NIC_curr equ

base
base
base
base
base
base
base

+ + + + 0+

+

~N O NS W N =

ws wa wa ws ws

physical address registers.
These registers are accessed
via NIC_cr bits 7,6 = 0,1.
LAN registers are accessed
via cntrl bits 3,2 = 0,0.

only written once during init

; Controller Page 2 - Ethernet PROM ADDRESS memory
; These locations contain the "preferred" address as contained

-204-

Distributed Issues Final Report

H in PROM. These will typically be copied to the physical

; address registers above (page 1).

prom_address_0 equ
prom_address_1 equ
prom_address_2 equ
prom_address_3 equ
prom_address_& equ
prom_address_5 equ

base
base
base
base
base
base

H Gate Array registers

pstr
pspr
dqtr
befr
pcfr
gacfr
cntrl
streg
idefr
damsb
dalsb
vptr2
vptri
vptro0
rfmsb
rflsb

§3823888834882328483

base
base
base
base
base
base
base
base
base
base
base
base
base
base
base
base

-~ we we

+ + 4+ + + 4+
~

oW N - O

-- station address
-+ station address
-- station address
-- station address
-- station address

[V IR N VIR N =)

-- station address

(note: offset of 400H)

400H;
401H;
402H;
403H;
4O4H;
405H;
406H;
407H;
408H;
4LO9H;
LOAM;
40BH;
40CH;
40DK;
40EH;
40FH;

+ + 4+ 4+t 4

page start register

page stop register

drq timer register

base configuration register
prom configuration register
ga configuration register
gate array (ga) control rgtr
ga status register
interrupt/DMA cnfgrtn rgtr
DMA address register hi

DMA address register lo
vector pointer rgtr H2
vector pointer rgtr H1
vector pointer rgtr #0
register file access hi
register file access lo

A 2222022222222 22222RRdididliddsddissssd)
‘

:* Ethernet (3com) Initialization Values *
222112 A22 2322022l 12 ddd2 s ddl il llsdds]d
’

eth_enable_reset
eth_disable_reset
eth_access_prom
eth_recv_select
eth_lan_config
eth_rem_OMA_burst
eth_irq_Lline
eth_rem_DMA_config
eth_xmit_buf_start
eth_recv_buf_start
eth_recv_buf_end
eth_offset
eth_recv_begin
eth_recv_end
eth_start_nic
eth_nic_stop

equ
equ

2383£82883832838

03h
00h
04h
00h
4%h
08h
80h
20h
20h
26h
40h
2000h
600h
200Ch
02h
01h

; enable reset

; disable reset

, access prom bytes

; select external Xceiver

; 8k of mem-map 1/0, w/interrupts

; # of bytes to transfer on DMA burst
; interrupts occur on [RQS

; Bk configuration for remote DMA
begin of transmission buffer (OH)
receive queue (0600H)
; 20 pages, 256 bytes/page (2000H)
difference between page & address
actual offset in RAM seg for begin
actual offset in RAM seg for end

; start NIC

; stop the NIC

s s =

s we

-205-

eth_nic_DMA_config
eth_remote_DMA_lo
eth_remote_DMA_hi
eth_packet_types
eth_nic_mode
eth_bndy_start
eth_int_status
eth_ints_disabled
eth_access_page 0
eth_access_page_1
eth_exit_mode

nic_prx
nic_ptx

send

; Interrupt Controller Commands

NET_EO! equ 60H + vector_number

equ

48h
00h
00h
00h
02h
00h
0ffh
00h
00h
4OH
00h

TIMER_EO! equ 60H + 0

ms me we ws ms ws Se ws Wi owa

LIST

Ethernet controller routine specifications

Distributed Issues Final Report

local DMA operations, 8 byte bursts
DMA remote unused (lo)

DMA remote unused (hi)

receive only good packets

internal loopback mode

FOR NOW, DO NOT USE BOUNDRY REG!
clear status of all ints at start
enable no interrupts

access page 0 again (for cmd reg)
access NIC page 1 registers

exit internal loopback mode

mask for packet receive interrupt
mask for packet transmit interrupt

command byte to start transmission

-- End Of Interrupt (specific)
timer is interrupt channel 0

Ethnet_Init initializes a 3com Etherlink [board to transmit and receive
packets via a memory mapped interface with the board located at DC00:0000.
The base address from which the registers are located is 310h. The init
routine intializes the memory to zeroes before it completes. Although no
DMA is used to transfer the data from main memory to the board’s memory
(which is referred as remote DMA operations), there is no choice but to
use the local DMA operations (transferring bytes or words from the board’s
memory to the board’s output fifo’s).

-206-

Distributed Issues Final Report

page 55,132
TITLE RTE - Distribted Ada Runtime Module

sssaasses .
IR N R R ERENY]

H
FILE: DA

sesesevsnsansese esessassassseeaen . sesssesunas .

. sesean IEEEEN e
20 lllllllIIIIIIlllIlllllllIlllllllllllllIllllllllllll

iiiea
_RTE.ASM

RTE - DISTRIBUTED Ada RUNTIME MODULE

Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA ;

’

Runtime Code to implement prototype Distributed Ada Services :

; This module implements the remote rendezvous operations to H

; support distributed Ada. ;

H H

; Currently provided are: H

H Remote_Entry, Remote_Select, Remote_Accept, Remote_End _Accept, ;

; Remote_Elab_Start, Remote_Elab_Wait, Remote_Elab_Continue. ;

H Local_End_Accept ;
; Ver Date Description

; 0.1 Nov-88 : Initial prototype
; 0.2 Dec-89 : Version 2 - Flexible task distribution Added

4 ma me ws w0 e =

......................... P D A esevecssan
R R R R R R R R R R R R R R R R R

.model large

public Initialize

These are entry points called by the vendor runtime interface to
invoke the runtime by generated code

e w4 we ome

public Request_Entry, Activate_Complete, Accept, Rendezvous_Complete
public Select, Create_Task

The 10 module invokes the runtime services when messages are received
via the NET_RECEIVE call

e we 0w

public NET_Receive ; called by I0

; Vendor Runtime Services
extrn VRTIf_Init:near

extrn VRTIF_Wait:far ; Vendor Supplied P Semaphore operation
extrn VRTIF_Signal_l:far ; Vendor Supplied V operation/interrupt
extrn VRTIF_Signal:far ; Vendor Supplied V operation

.~

: After or instead of using the distributed runtime, control may be
: passed bact to the vendor runtime through this interface

-207-

Distributed Issues Final Report

extrn VRTIF_Create_Task:near

extrn VRTIF_Activate_Complete:near
extrn VRTIF_Entry:near

extrn VRTIF_Rendezvous_Complete:near
extrn VRTIF_Accept:near

extrn VRTIF_Select:near

extrn VRTIF_Lower_Priority:near

Vendor task control block information and runtime data segment address

-~ = w0

extrn VRTIF_tcbtid:abs ; offset to priority within vendor TCB
extrn VRTIF_task_ptr:word ; offset to current TCB with runtime DS
extrn VRTIF_DS:word ; offset within user DS to runtime DS

extrn VRTIF_SELECT_REC:abs ; number of bytes per "select record"

extrn Sync:near ; call synchronize
extrn Shut_Down:near ; restart system on “COLD_START"
extrn TASK_DIRECTORY:word

; Network 10 Services
extrn TX_READY:near
extrn 10 _XMIT:near
extrn 10_Network_Init:near

Transmit ready semaphore
Start transmission routine

extrn 10_ALLOCATE:near ; allocate a buffer
extrn 10_DEALLOCATE:near ; deallocate a buffer
extrn PID:word ; THIS processor 1D

extrn SYNCHRO_SEMAPHORE :word
extrn CONTINUE_SEMAPHORE :word

extrn Outchr:near ; for debugging only
include DA_DEF.ASM ; system definitions
cseg segment common
assume cs:cseg,ds:cseg,es:cseg
org 14004
T T T T i aa st i i e aeitassiiiireiisiesioiaiiniisitaitesiaissesitieii
H
; Initislize -- no parameters
H
Initialize:

call 10_Network_lInit
call VRTIF_init

ret
P i N Rl r e it it aaae i s i st issraaitsiasniiiaesnistinitessiinioie
; Prior to each Create Task, synchronize all CPU’s to keep elaboration
; going sequencially

-208-

Distributed Issues Final Report

.
.

Create_Task:

push ds
push ax
H mov al,’c’
; call Outchr H
mov ax,cs
mov ds,ax
call Sync ; do synchronization
pop ax
pop ds
jmp VRTIF_Create_Task ; return to vendor runtime

R O R R R R Y

; A task has completed activation and called "ACTIVATED". Since there
; are no parameters, simply nest the call to the vendor runtime so it
; will return here when done. First, provide a unique ID based on

; priority for each task. Then we see if the task should remain

; alive. If not, suspend it on a dummy semaphore

Activate_Complete:

push bp

mov bp, sp

push ax

push bx

push cx

push dx

push si

push di

push ds

push es

mov ds, [VRTIF_DS]

mov si, [VRTIF_TASK_PTR]
mov cx, [si+VRTIF_TCBTID) ; get priority (of this task type)

; During Activation all tasks have the priority of their task type, however
; since the priority is used to identify tasks, and possibly serveral tasks
; wWill be of the same task type, count the tasks of each task type and

; assign them a unique priority. (note the initial priorities must be

; assigned with sufficient space so that this has no effect on scheduling).
; Decreasing Acda priorities have increasing VRT priority (by two).

mov di,cx
add di,di ; mult by four to make index
add di,di

Modifying count for base task is atomic action

~e we wa

pushf
cli

-209-

mov

Distributed Issues Final Report

ax,cs:TASK_DIRECTORY.DTCB_dir_Count{dil; get # of tasks for type

add word ptr cs:TASK_DIRECTORY.DTCB_dir_Count({dil,2 ; adjust it for next

popf

or
jz
add
push
calt
pop
add
add

ACT_COMPLETE10:

pop
pop
pop
pop
pop
pop
pop
pop

pop
add

push
call

sub
push

push
push
push
push
push
push
push
push

ax, ax ; see if delta on this priority
ACT_COMPLETE10 ; if so skip changing of pririty

cX,ax ; compute new priority

cx ; save priority

VRTIF_Lower_Priority ; setpriority lower cx=priority si=v-TCB
di

di,di

di,di

ax,cs ; set DRT data segment
ds,ax

bx,TASK_DIRECTORY.DTCB dir_TCBI[di] ; get DRT TCB
bx,DEF_return_addr (bx] ; point to return addr

di, (bp+2] ; get return address offset
{bx],di ; save in TCB

di, [bp+4] ; get return address segment
{bx+2] ,di

es
ds
di

si

dx
cx
bx
ax

bp

sp, 4 ; trash return address (saved in TCB)

cs ; simulate a FAR call
VRTIF_Activate_complete

sp,4 ; make room for return address
bp

bp,sp

ax

bx

cx

dx ; "mul' affects this
si

di

ds

es

ds, (VRTIF_DS] ; get Vendor runtime data segment

-210-

Distributed Issues Final Report

mov si, [VRTIF_TASK_PTR] ; fetch Current Task TCB

mov bx, [si+VRTIF_TCBTID] ; get priority (our task type)

mov ax,cs ; load DRT data segment

mov ds, ax

add bx, bx ; mult by four to make index

add bx, bx

mov ax,TASK_DIRECTORY.DTCB_dir_pid(bx}; fetch PID for this task
cmp ax, [PID] ; see if this is the processor

jz Keep_alive

If here, this task should not continue to run... suspend it.

pushf ; this must be atomic
cli

xor ax,ax ; init a dummy semaphore
mov [DUMMY_SEM} , ax

mov [DUMMY_SEM+2] , ax

mov [DUMMY_SEM+4], ax

push cs

lea ax,DUMMY _SEM

push ax

call VRTIF Wait ; go to sleep forever
popf

int 3 ; if here... ERROR!

; This task should be allowed to live, let it continue

Keep_alive:

mov si,TASK_DIRECTORY.DTCB_dir_TCB[bx] ; fetch T1CB
lea si,DEF_return_addr(si]
mov ax, [sil ; fetch offset
mov [bp+2) ,ax ; put on stack
mov ax, [si+2] ; fetch segment
mov (bp+41, ax
pop es
pop ds
pop di
pop si
pop dx
pop cx
pop bx
pop ax
pop bp
retf
H Programs will come here when they want to do an entry call. |If

the call is to a task with remote callers, we must go through the
distributed runtime, otherwise go to local runtime.

’

-211-

Distributed Issues Final Report

: lnput parameters:

ES:DX points to Parameter List
BX task id to call

CX entry id to call

~e ms =

'

Request_Entry:

push ds ; save for vendor runtime

mov ds, [VRTIF_DS] ; fetch local runtime data segment

mov si, (bx+VRTIF_tcbtid]l ; get distributed task id (priority)
mov ax,si ; save task id

mov di, [VRTIF_TASK_PTR} ; get vendor T({8 of current task

mov di, [di+VRTIF_tcbtid) ; fetch distrib. tid of current task
pop ds ; restore ds

add si,si ; mult by four to make index

add si,si

test cs:TASK_DIRECTORY {si) ,OFFFFH ; see if local or remote
jnz Dist_Entry ; if entry must be done by distributed runtime

; This ertry is strickly local, let vendor runtime handie it

jmp VRTIF_Entry ; go to vendor runtime

; This entry must be handled by the distributed run. ae, check to see if
; the called task is on this processor.

Dist_Entry:

; push ax
; mov al,r’
: ~all Outchr
; pop ax
mov si,cs:TASK_DIRECTORY.DTCB_dir_pid[si} ; fetch PID of called task
cmp si,cs: [PID] ; compare against my PID
jnz Remote _Entry
jmp Local_Entry ; do local if the same

Remote_Entry

;
H Send "Request_Entry' message with copied parameters and profile
; Wait on Entry_Wait_Semaphore

; Copy OUT parameters

; Release Buffer

; IN PARAMETERS:

H AX distributed task id to call

H CX entry id to call

; DI distributed task ID of this caller task
; ES:DX points to Parameter List

-212-

Distributed Issues Final Report

H NOTE: Stack Parameters are removed by caller

;
RE_Parm_List
RE_Profile
RE_Count
RE_TCB
RE_TID
RE_BUFF_DESC
RE_BUFF_PTR

Remote_Entry:
H push
; mov
H call
; pPop

push

equ -4
equ -6
equ -8
equ -10
equ -12
equ -14
equ -156
ax

al, 'R’
Outchr

ax

bp

bp,sp

sp,RE_BUFF_PTR
ds
cs
ds
{bp+RE_TID]1,di

[bp+RE_Parm_tist+2) ,es ;
[bp+RE_Parm_. ist],dx H

dword
parameter profile ptr

-~ wa =

parameter count

; dist. TCB of server

; Distrib. Task ID of caller
; descriptor of reply buffer
: address to packet data

; local parameters to save
; save caller’s DS

; load DRT data segment

; save task id of caller

save segment of parameter list
save offset of parameter list

; Build catl frame to transmit ertry call to designated task

; PARM_LIST

push es

push dx

mov dx,DEF_in
; MODE

push dx

mov bx,cx

add bx, bx

add bx, bx

add bx, bx

mov si,ax

add si,si

add si,si

mov

mov [bp+RE_TCB],si

mov

mov {bp+RE_Profile),dx ;
; PROFILE

push dx
; TID of Source

push di
; ENTRY

push cx

si,Task_Directory.DTCB_dir_TCB[si]

; push segment of parameter list
; push offset of parameter list
; calling Xmit for IN mode

; get entry id

; muit by two

; mult by four

mult by eight (8 bytes per entry descriptor)
get destination TID in SI

mult by four to make index

; fetch dist. TCB

; save for later

dx,DEF_Entry_Table+DEF_entry_profile_ptr(si+bx] ;profile offset

save for later

; push as parameter

; push entry id

-213-

Distributed Issues Final Report

; TID of Destination

push ax ; push (DA) task id
; CMD for remote entry call
mov di ,DEF_request_entry
push di
; PID of Destination
mov di,ax ; get back TID of dest.
add di,di ; mult by four to make index
add di,di
mov di,Task_Directory.DTCB_dir_PID[di] ; fetch PID
push di ; push PID
call 10_Xmit ; parameters are copied by xmit

Now wait for rendezvous Complete to wake up

- we we

mov si, [bp+RE_TID] ; get my dist TID

add si,si

add si,si

mov si,Task_Directory.DTCB_dir_TCB(si] ; fetch my dist. TCB
push cs

push si ; base of DA TCB is semaphc -e

call VRTIF_Wait ; go to sleep waiting for end rendezvous

; Copy out parameters back. Use the TCB definitions
; to determine how many parameters, their size, and what type (ie. must
H allow for unconstrained arrays).

First get address of buffer and stick it in local

mov si, (bp+RE_TID} ; get my dist TID

add si,si

add si,si

mov si,Task_Directory.DTCB_dir_TCB(sil ; fetch dist. TCB
mov si,DEF_TCB_Reply([sil ; get reply buffer descriptor
mov [bp+RE_BUFF_DESC],si ; save it for later deallocation
mov si, [si] ; get actual buffer address
lea si,DEF_pkt_data(si) ; point directly to data

mov [bp+RE_BUFF_PTR],si ; save pointer

mcv si, [bp+RE_Profile] ; get parameter profile ptr
cld ; make sure auto increment
lodsw ; get number of parameters

R_Entry_10:

or ax,ax ; see if done
jnz R_Entry_12 ; continue if not done
jmp R_Entry_30 ; if done
R_Entry_12:
mov (bp+RE_COUNT] ,ax ; update parameter count

214-

Distributed Issues Final Report

Lodsw

mov cx, [sil

add si,2

mov [bp+RE_PROFILE],si

lds si, (bp+RE_parm_list]
; note: vendor

push data_seg(si]

push data_off(si]

or cX,cX

jge R_Entry_15

.~ w

'

’

’

’

get parameter Mode

fetch parameter type/length
skip over type/length

update profile pointer for next

; point to parameter list
puts segment/offset in reverse of normal order
; segment of data

offset of data

; see if unconstrained type

process an unconstrained object as a parameter. Note, the

; descriptor is always copied, so we amust skip 3 words in buffer

; and over

push
push
add

; Copy the

sub
inc

two in the parameter list

[si+4)
[si+6]
si,8

descriptor segment

; offset of descriptor

word ptr [bp+RE_parm_list),si ; update parameter list index

si, [bp+RE_BUFF_PTR]
si,b
[bp+RE_BUFF_PTR], si
si

ds

ax

cx, [si+DEF_low_desc]
ax, [si+DEF_high_desc]
dx, [si+DEF_size_desc]

’

13

; adjust buffer pointer over constraint

skip over constraint
update

get offset of descriptor
get segment of descriptor
save MODE of parameter

; get low bound of constraint
; get high bound of constraint
; get size of object

parameter data iff MODE is correct and array is not null

bx,cs

ds,bx

bx

di

es

bx,DEF_out
R_Entry_20

ax,cx

ax

dx

R_Entry_20

cx, ax

si, [bp*RE_BUFF_PTR]
movswW
(bp+RE_BUFF_PTR),si
R_Entry_20

reload DRY data segment

get mode of parameter

get offset of data

get segment of data

see if we should copy data

if not, go on

compute difference in range
adjust to include end points
compute size in words

if array is empty go to next parm
put in count register

transfer from packet buffer

; update pointer

go on to next parameter

; Constrained parameter, CX is length in bytes, copy it into packet buffer

-215-

;
R_Entry_15:

add
mov

pop

pop
and

mov
mov
jz

mov
inc
shr
rep
mov

R_Entry_20:

’
'

’

Free buffer,
(it restores

R_Entry_30:

mcv
call

si, 4

Distributed Issues Final Report

; move to next object address

word ptr [bp+DEF_parm_list]l,si ; update parameter list index

di
es

ax,DEF_out H

ax,cs
ds, ax

R_Entry_20 ;

si, [bp+*RE_BUFF_PTR)

cx H
cx,1 H
movSHW
[bp+RE_BUFF_PTR],si H
, [bp*+RE_Profilel ;
ax, [bp+RE_Count] H
ax ;
R_Entry_10

restore stack,

bx, [bp+RE_BUFF_DESC) ;
10_Deal locate H

ds
sp,bp

get data offset

get parameter data segment

see if mode is right to copy out
restore distrib. data segment

skip copy of data if not out mode
get buffer pointer in DS:S!

round odd bytes up when convert
to words

update current packet buffer ptr
get next parameter profile

get the counter back in ax
count down

and return to entry caller
DS and any any stack frame it may have built)

get reply buffer descriptor back
return used buffer

restore caller’s data segment
dallocate locals

lIlllllllIllllllllllllllllllllll'llllllllIllllllllllllllllll.lllllll'llllllll

.

Local_Entry

Although
to store
is later

: This routine is called for an entry of a task

which is local (same processor) as the caller

TID of called task
Vendor TCB of called task

Entry ID

offset to parmeter list

segment of parameter list
PID of called task

MY_TID

the task is local to the caller, an 10 buffer is allocated
the necessary pointers required by accepting tasks. This

deallocated as part of the local_end_accept routine. The
calling task is always suspended, and if the accepting task is "waiting"
it is signaled to wake up.

-216-

Distributed Issues Final Report

H Only the TID EID and MY_TID fields within the buffer are valid during
H local rendezvous. Also, the data fields have the address of the
: various objects/desciptors rather than the data itself.

H NOTE: There is no need to deallocate the buffer allocated here because
H it is deallocated by the server task. (There is only one
H buffer used by local tasks, rather than two as for remote tasks.)

LE_ENTRY_PTR equ -2 ; word: bp offset to current entry table

LE_TCB_PTR equ -4 ; word: bp offset to target TCB base
LE_MY_TCB equ -6 ; word: bp offset to my TCB base

Local_Entry:

; push ax
H mov al,’L’
H call Outchr
i pop ax
push bp
mov bp, sp
add sp,LE_MY_TCB ; allocate space for locals
push ds ; save caller’s data segment
push cs ; load DRT data segment
Pop ds
push ax ; save TID
call 10_Allocate ; get a buffer descriptor ptr in BX
pop ax
mov si, [BX] ; fetch buffer address

; currently only one parameter is used (either in or out). Take advantage

; of this to simplify interface to accepting task. The address of the

H data area is provided in the first part of the buffer. NOTE: this address
M is backwards (segment=low address, offset=high address).

push ax

push di

mov di,dx

mov ax,es: (di] ; transfer parm list to buffer
mov {si],ax ; buffer so as to point to the
mov ax,es: [di+2) ; data and descriptors actually
mov {si+2],ax ; processor

mov ax,es: [di+4)

mov [si+4] ,ax

mov ax,es: [di+6)

mov [si+6],ax

pop di

pop ax

mov DEF_pkt_tid(si], ax ; put in called task TID

mov DEF_pkt_my_tid(si],di ; and put in calling task id there

217-

Distributed Issues Final Report

mov DEF_pkt_cmd(si),DEF_local_call ; indicate this is a local call

add di,di ; mult by four

add di,di

mov di,TASK_DIRECTORY.DTCB_dir_TCB(di] ; get my TCB addr

mov [bp+LE_MY_TCB),di ; save it

mov [si+DEF_pkt_Entry_ID],CX ; save entry id

mov si,ax ; get TID of called task into si
add si,si ; mult by four

add si,si

mov ax,TASK_DIRECTORY.DTCs_dir_TCB[si] ; fetch dist. TCB addr
mov (bp+LE_TCB_PTR] ,ax ; save base of T(B

mov si,cx ; compute entry table address
add si,si ;s *2

add si,si s * 4

add si,si ; * 8

aad si,ax ; add base of (DA) TCB

add si,Def_Entry_table

mov {bp+LE_Entry_PTR],si ; save

lea si,DEF_Entry_Queue(si] ; fetch entry queue head

ATOMIC action follows... Queue entry, if waiting signal acceptor

pushf

cli

catl INSERT ; place buffer descriptor on entry ¢
mov si, [bptLE_Entry_PTR] ; fetch entry table address again
test DEF_Entry Wait([si),OFFFFH ; see if WAITING

jz 1e020 ; go on if not

; server is waiting on accept, signal it

mov si, [bp+LE_TCB_PTR] ; get task Control Block

mov cx,DEF_num _entries(si] ; get number of entries

lea si,DEF_entry_table([si] ; point to base of table
1e010:

mov DEF_Entry_Wait[si],O ; clear (all) waiting flags

add si,size DEF_Entry_Rec ; go to next entry record

loop 1e010

push cs ; segment of semaphore

mov ax, [bp+LE_TCB_PTR] ; offset of semaphore

push ax

call VRTIF_Signal ; wake up server (may preempt ourselves)

; NOTE: This is the end of the atomic region (above Vendor runtime call
H reenables interrupts!

1e020:
popf ; restore interrupt level
push cs ; now try to suspend ourselves
-218-

push

call

pop

pop
retf

: Accept -

test
jnz
Siiiiiiiiiig

Distributed Issues Final Report

ax, [bp+LE_MY_TCB} ; semaphore is first thing in TCB
ax
VRTIF Mait ; may not suspend if server is higher
; priority and has already signaled us!
ds ; restore DS
sp,bp ; remove locals
bp
R)
is invoked by the generated code to wait for arrival of
a caller.
INPUTS:
AX is entry to accept
OUTPUTS:
ES:BX is parameter list pointer
ds
ds, [VRTIF_DS] ; get runtime data segment
si, [VRTIF_TASK_PTR]
si,VRTIF_tcbtid(si] ; fetch my TID
ds
si,si ; mult by four to make index
si,si
cs:TASK_DIRECTORY.DTCB_dir_LOCAL[si),OFFFFH ; distributed?
Dist_Accept ; must to a distributed accept
VRTIF_Accept ; otherwise, return to vendor runtime

R R

; Distributed Accept (TASK_ID, ENTRY_ID) return ES:8X_Param_Pointer

’

H NOTE: THIS HANDLES BOTH ACCEPTANCE FOR LOCAL AND REMOTE CALLS
; THROUGH THE DISTRIBUTED RUNTIME.

H Simple Accept, see if someone on entry queue, if so

H return with pointer to buffer in ES:BX, otherwise set

H "Waiting" Flag and go to sleep on semaphore.

;

; Inputs: TASK_ID, ENTRY_ID

H Outputs
H

RA_TCB
RA_ENTRY

: Returns ES:8X pointing to Parameter Data List
Also, Buffer descriptor is placed in "Reply" pointer.

equ -2 ; word: my TCB
equ -4 ; word: this entry

-219-

Dist_Accept:
push
mov
call
pop

push

mov

LT R

sub
push
push

lea
mov
pushf
cli
test
jnz

Distributed Issues Final Report

ax
al,’a’

Outchr ; 3
ax

bp
bp, sp
sp,4
ds ; save old data segment
cs ; load data segment
ds
si,TASK_DIRECTORY.DTCB dir_TCB(sil ; fetch TCB ptr
{bp+RA_TCB],si ; save it
bx,ax ; compute entry index
bx, bx s * 2
bx,bx FERANA
bx,bx ; * 8 (eight bytes per entry)
bx,DEF_entry_table(si+bx] ; point to my entry of interest
[bp+RA_ENTRY],bx ; save it too
; save interrupt status
; go atomic
DEF_entry_Queue+2[bx] ,0FFFFH ; if Zero, then queue is empty
RA010 ; if caller is there, take it!

No caller on entry queue. Set waiting flag and go to sleep

mov [bx+DEF_entry_wait},1 ; set flag
push cs ; push segment of my task semaphore
push s1 ; address of my tcb
call VRTIF_WAIT ; go to sleep waiting for caller
; NOTE after vendor runtime call - interrupts are enabled!

’
; Now Something is on the queue, provide address of parameter list in
; ES:8X and return %o caller.

mov

; restore interrupt status
si, (bp+RA_TCB) ; get TCB pointer back
bx, (bp+RA_ENTRY] ; get the entry address back

; note: the wait flag is cleared by the caller

pop

pop

bx ,0EF_entry_queue+2[bx] ; get buffer descriptor from queue
DEF_tcb_repty(si),bx ; save descriptor for end rendezvous

bx, [bx) ; fetch buffer address into BX (return)
ax,cs ; get segment into ES, making ES:BX pair
es,ax ; parameter list is in buffer

; 1t has been put there by either the
; local or remote entry call mechanisms

ds ; restore data segment
sp,bp ; remove locals
bp

-220-

Distributed Issues Final Report

lll"llllllll'll'l'llllllllllllllll

H Select -
; INPUTS:
; STACK frame has open alternatives. As best as we can
H tell, it looks like this:
; [flags 1
H [entry #]
H { unknown]
H Each alternative appears to have three words with the
H “flags" word being not-zero. If it is zero, this indicates
; the end of the list.
; OUTPUTS:
H ALl input parameters are removed from the stack and replaced
; the parameter list pointer and a selector which indicates
; which alternative was selected.
SELECT_LIST equ 6 ; offset from bp to open alternatives
FLAGS equ 0 ; offset to flags withing list record
ENTRY_ID equ 2 ; offset to ID# within List record
Select:
push ds
mov ds, [VRTIF_DS] ; get runtime data segment
mov si, [VRTIF_TASK_PTR]}
mov si,VRTIF_tcbtid{sil ; fetch my TID
pop ds
add si,si ; mult by four to make index
add si,si
test cs:TASK_DIRECTORY.DTCB_dir_local [si] ,OFFFFH ; distributed?
inz Dist_Select ; must to a distributed select
jmp VRTIF_Select ; otherwise, return to vendor runtime

lllllIlllllllIlllllllllllllllllllllllIlllIlllllllllllllllllllll!lllllllllllll

’
2

'

’

Dist_Select

Check to see if any of the entries have callers. [f not,

set the "Waiting" Flag in each of them, and go to sleep.

[f one entry has a queued regquest, accept it and return

offset for "Case" table and parameter list pointer on the stack
The offset for the case table is the entry id + 1,

INPUTS: Index into TASK_DIRECTORY is in SI

DS_TCB equ -2 ; word: my TCB
DS_ENTRY equ -4 ; word: this entry
DS_ALTER equ -6

Dist_Select:

-221-

Distributed Issues Final Report

; mov al,’s’
H call Outchr ; ad
push bp
mov bp, sp
add sp,DS_ALTER ; allocate local storage
push ds ; save DS
mov ax,cs
mov ds,ax ; set to Distr. runtime data segment
mov si,TASK_DIRECTORY.DTCB_dir_TCB(si] ; fetch TCB ptr
mov [bp+DS_TCBI,si ; save it

; ENTER CRITICAL REGION (cannot allow task to go on an entry queue
; after we have checked it, but before setting waiting flag.

pushf
cli

; First check each entry to see if any has
; Go through all open alternatives

.
’

a caller...

Rem_Sel00: ; Will come back here after resume

lea ax, (bp+c” .~ _LIST] ; get address of entry list

mov [bp+hS & _R],ax ; save in local variable
Rem_Sel10:

mov Y%, (bp+DS_ALTER] ; get pointer

test SS:FLAGS [bx] ,0ffffH ; test if end of the list

jz Rem_Sel 15 ; did not find it

OV ax,SS:ENTRY_ID [bx] ; get entry ID

mov bx,ax ; compute entry index

add bx, bx ;v 2

add bx, bx HER A

add bx, bx ; * 8 (eight bytes per entry)

lea bx,DEF_entry_table(si+bx] ; point to entry of interest

test DEF_entry_queue+2(bx] ,0FFFFH

jnz Rem_Sel50 ;

; if Zero, then queue is empty
if caller is there, take it!

add word ptr [bp+DS_ALTER] ,VRTIF_SELECT_REC ; bytes per record

jmp Rem_Sel10 H

; all of the Entry Queues are Empty, mark
; and go to sleep.

Rem_Sel15:
lea ax, (bp+SELECT_LIST) ;
mov [bp+DS_ALTER],ax ;
Rem_Sel20:
mov bx, {bp+DS_ALTER] H
test SS:FLAGS (bx) ,0ffffH ;
jz Rem_Sel30 ;
mov ax,SS:ENTRY_ID [bx} ;
mov bx, ax ;
add bx , bx H

loop till end of list

each Waiting flag

get address of entry lis¢
save in local variable

get pointer

test if end of the list
done

get entry ID

compute entry index

* 2

-222-

IR N =N BN =N e

Distributed Issues Final Report

add bx, bx HER

add bx, bx ; * 8 (eight bytes per entry)
lea bx,DEF_entry_table(si+bx] ; point to entry of interest
mov DEF_entry_wait(bx],1 ; set waiting

add word ptr (bp+DS_ALTER),VRTIF_SELECT_REC

jmp Rem_Sel20 ; loop till end of list

; The following runtime call will suspend this task, when it
H resumes, the interrupt flag will be set again, and presumably,
; one of the entries will have a caller queued.

’

Rem_Sel30:
push cs ; push segment of wait_semaphore
push [bp+DS_TC8B] ; push offset of wait_semaphore taskid
call VRTIF_Wait ; do wait on semaphore

; Now clear all the waiting flags

cli

lea ax, [bp+SELECT_L1ST) ; get address of entry list

mov (bp+DS_ALTER],ax ; save in local variable
Rem_Sel40:

mov bx, [bp+DS_ALTER] , get pointer

test SS:FLAGS [bx] ,0ffffH ; test if end of the list

iz Rem_Sels5 ; done

mov ax,SS:ENTRY_ID [bx] ; get entry ID

mov bx,ax ; compute entry index

add bx, bx ;*2

add bx, bx s * 4

add bx, bx ; * 8 (eight bytes per entry)

lea bx,DEF_entry_table[si+bx] ; point to entry of interest

mov DEF_entry_wait{bx},0 ; clear waiting

add word ptr [bp+DS_ALTER},VRTIF_SELECT REC

jmp Rem_Sel40 ; loop till end of list

Rem_Sel45:
jmp Rem_Sel00 ; 90 back and find caller

; There is a caller on this entry queue, do start accept
H Fetch the Caller’s buffer, which has a (backward) pointer to
; the parameter data

Rem_Sel50:

popf ; no longer critical

mov si,DEF_entry_queue+2(bx] ; fetch buffer descriptor

mov di, (bp+DS_TCB] ; get base of my TCB back

mov DEF_tcb_reply(dil,si ; put buff descriptor into reply ptr
mov si, [si) ; get actual buffer (which is parm list)
inc ax ; make entry id # compatible with VRTIF

-223-

s e e we

'
’

’

Distributed Issues Final Report

Now pull parameters off of stack, and replace with parm_list ptr and

case selector

pop ds
mov sp,bp
pop bp
pop bx
pop cX

: get DS back

; start with all tocals
; get back saved bp

; get return offset

; get return segment

Go thru open alternative list, removing three words per entry

Rem_Sel60:

pop dx

or dx,dx

jz Rem_Sel70

pop dx

pop dx

imp Rem_Sel60
Rem Sel70:

push cs

push si

push ax

push (33

push bx

retf

; get ENTRY flag ??

; zero?

; if zero, this is end of list
; remove this alternative

; segment of parm list ptr

; offset of parm list (buffer)
; selector for case

; put return segment back on

; and return offset

; and teave

R R N N N NN N N NN RN

; This is called by the generated code to indicate end of an accept body.
; When the rendezvous complete call is made, determine if the caller was
; on my processor. If not, use the Remote end accept, otherwise use the
; local end accept

; Inputs:
; No user inputs, only the REPLY pointer
; provides information regarding the responding task.

Rendezvous_Complete:

push ds

mov ds, [VRTIF_DS) ; get runtime data segment
mov si, [VRTIF_TASK_PTR)

mov si,VRTIF_tcbtidl(sil ; fetch my TID

pop ds

add si,si ; mult by four to make index
add si,si

test cs:TASK_DIRECTORY.DTCB_dir_LOCAL(si),OFFFFH ; distributed?
jnz Dist_End_Accept ; must to a distributed accept
jmp VRTIF_Rendezvous_Complete ; othe~wise, return to vendor runtime

cvecsromennacs sse s e v seecenn IR
R R N N N N N N N N N NN

-224-

Distributed Issues Final Report

H Distributed End_Accept -

; Reply ptr has got the buffer descriptor, use it to determine
H if call was local or remote
DEA_ENTRY equ -2 ; local word for entry pointer

Dist_End_Accept:

; mov al,’e’
H call Outchr ; 2a
push bp
mov bp,sp
sub sp,?2 ; local data
push ds ; save previous DS
push cs ; load data segment
pop ds
mov si,TASK_DIRECTORY.DTCB_dir_TCB([si] ; fetch TCB of my task
mov di ,DEF_tcb_reply(si] ; fetch buffer descriptor
mov di, [di]
mov ax,DEF_pkt_entry_id[di] ; fetch Entry id
mov bx,ax
add bx, bx ; mutt by 2
add bx, bx s * 4
add bx,bx ; *8
lea bx,DEF_entry_table[si+bx] ; point to entry
mov [bp+DEA_ENTRY], bx ; save entry record ptr
lea bx,DEF_entry_queue (bx) ; point to entry queue
call REMOVE ; pull entry off queue BX now @ buffer

cmp DEF_pkt_cmd(di] ,DEF_local_call ; see if this is local

jz Local_End_Accept
i a i a T a0 ead0 a0 0000 a0 000000000 i0iiesiiiqitiiiaiitsidsaeicaiassiiiieiis
H Send output parameters to caller.
H Release buffer used to hold input (and output for now) parameters.
H INPUT: SI is my TCB address
; DI points to buffer used for this rendezvous
; BX points to buffer descriptor
; NOTE: Stack frame is already build for local parameters

Remote End_Accept:

; mov al, 'R’
; call Outchr
push bx ; save buffer descriptor

; Build stack for XMIT
H

; PARM LIST PTR

-225-

Distributed Issues Final Report

push cs ; segment of buffer
push di ; first part of buffer is parm tist
MODE
mov ax,DEF_out ; out mode
push ax
PROFILE
mov bx, [bp+DEA_ENTRY] ; get base of this entry
mov bx,DEF_entry_profile_ptr [bx] ; fetch prorile
push bx
MY_TID
mov ax, [di+DEF_pkt_TID] ; This task was the orignial TID
push ax
ENTRY
mov ax, [di+DEF_pkt_entry_lD)
push ax
TID
mov di, [di+DEF_pkt_MY_TID] ; get caller’s task ID
push di
CMD
mov ax,DEF_rendezvous_end
push ax
; PID
add di,di ; mult TID by four to make index
add di,di
mov ax,TASK_DIRECTORY.DTCB_dir_pid(dil ; fetch PID
push ax
calt 10_Xmit ; transmit reply

Now we are done with the received buffer, release it

pop bx ; get descriptor ptr back

call 10_Deallocate ; release buffer, descriptor in BX
pop ds ; restore DS

mov sp, bp

pop bp

retf

..

llllllllllllllllllllllIlllllllllllllllllllllll'llllll'llllllllllllllllllllll

Local_End_Accept
Allow caller to continue (Note: this is for entry calls with parameters
that are all passed by reference. No copy-back is required).
All entries whether remote or local use a buffer, therefore deallocate
it wien complete.
INPUT: SI is this task’s TCB address
DI points to buffer used for this rendezvous
BX points to buffer descriptor

NOTE: Stack frame is already build for local parameters

-226-

Distributed Issues Final Report

Local_End_Accept:

'

Now wake up caller

mov al,'L’
call Outch:
mov si,DEF_pkt_my_tid[di] ; get TID of caller
call 10_Deal locate ; done with buffer deallocate @ BX
add si,si ; mult by four to make index
add si,si
mov si,TASK_DIRECTORY.DTCB_dir_TCBI[si) ; get TCB of caller
push cs ; push segment of semaphore
push si ; push calling Task’s TCB (SEMAPHORE)
catl VRTIF_Signal ; signal task to continue
pop ds ; restore DS
mov sp,bp
pop bp
retf
R R R R R R R R R
Net_Receive - processes an incoming message ;

This routine is called by the interrupt handler (in ;

the 10 Module) to initiate action based on the :
receipt of a packet. When the service handler is ;
called, BX contains the address of the buffer :

descriptor.

R R R R R R R R R R R R R R R AT

Net_Receive:

mov
mov
or
js
cmp
ig
shl
imp

si, [bx]

di, [si+DEF_pkt_cmd]
di,di

Net_Receive Error
di,command_limit
Net_Receive_Error
di, 1

vector {di]

Net_Receive _Error:

'
’

mov
call
call
ret

al,’s’
Outchr
10_deal locate

; get address of actual buffer
; fetch command
; do range check

; make command into word index

; trash message

The following vector table implements the ‘case’ statement
on the message ACTION fField

vector label

dw
dw

word
offset Sync_Start
offset Sync_Ready

-227-

Distributed Issues Final Report

dw offset Sync_Continue

dw offset Entry_Call

dw offset Rendezvous_End

dw offset Shut_Down ; COLD START
vector_end label word
command_Limit equ (vector_end - vector) / 2 - 1

G

'
'
’

'

Future versions of the vector table will include
Begin_Remove Entry
End_Remove_Entry
Begin_Abort
End_Abort
Begin_Terminate
End_Terminate
Shared Variable_Request
etc.

R R

This code section is executed upon receipt of a message initiating
a Begin_Elaborate request. B8X points to buffer descriptor.
NOTE: THIS IS ONLY RECIEVED BY SLAVES!

Sync_Start:

call [0_Deal(ocate ; no need for buffer

push cs ; wait up slave

lea ax,SYNCHRO_SEMAPHORE

push ax

call VRTIF_Signal_I ; signal task to continue

ret

lIIIllllllIIIIIIIII"IIlIllllllllllIllllllllllll'lllll'l."IIIII IR NN Y]

'

n

This code section is executed upon receipt of a message initiating

an End_Elaborate. This message implies that the specified elaboration has
been compieted on the remote processor and elaboration can continue

on the primary processor.

INPUTS: BX points to buffer descriptor.
NOTE: THIS IS ONLY RECEIVED BY THE MASTER

Sync_Ready:

call 10_Deal tocate ; no need for buffer
push cs ; wait up slave
ea ax,SYNCHRO_SEMAPHORE
push ax
call VRTIF_Signal_l ; signal task to continue
ret
R R R R R R R R A R

-228-

Distributed Issues Final Report

Sync_Continue: Executed when a "sync_continue' message arrives..
: NOTE: ONLY RECEIVED BY SLAVES, half way through syncrhonization

Sync_Continue:

caltl 10_Deallocate ; no need for buffer

push cs ; wait up slave

lea ax,CONTINUE_SEMAPHORE

push ax

call VRTIF_Signal _I ; signal task to continue
ret

This code section is executed upen receipt of a message initiating
an entry call

Place buffer on Entry queue, If "Waiting" for that entry is TRUE,
then clear all Waiting Flags and signal Wait Semaphore.

H INPUTS:

; BX
H S1

Buffer descriptor pointer

Buffer pointer

This code assumes only a single parameter (simplification for prototype)
NOTE: pointers to data and descriptors are stored backward
H from normal Intel OFFSET,SEGMENT format

type_len equ 4 ; offset to type/len field in profile
data_seg equ 0 ; position w,~hin buffer for ptr to data
data_off equ 2
desc_seg equ 4 ; position within buffer for ptr to desc
desc_of f equ 6
true_data equ 6 ; offset for data (after descriptor)
Entry_Call:

mov dx, bx ; save buffer descriptor

mov bx, [si+DEF_pkt_tid) ; get task id

add bx, bx ; mult by four to make index

add bx, bx

mov bx,TASK DIRECTORY.DTCB_dir_TCB[bx) ; get task control block

mov ax, [si+DEF_pkt_Entry_ID]; fetch entry id

mov di,ax ; compute entry offset

add di,di ; mult times 2

add di,di ; times 4

add di,di ; times 8

lea di,DEF_entry_table(di+bx] ; point to current entry

push di

currently only one parameter is used (either in or out). Take advantage

-229-

mov
test

pop
jns

Distributed Issues Final Report

of this to simplify interface to accepting task. The address of the
. data area is provided in the first part of the buffer. NOTE: this address
is backwards (segment=low address, offset=high address).

di ,DEF_entry_Profile_Ptr{dil ; point to parameter profile

[di+type_ien] ,OFFFFH H
di ;
Entry_010 H

data_seg(sil,cs ;

see if constrained
restore entry pointer
go on if constrained

. Pparameter is unconstrained, first pointer is to data, second to descriptor
The data will actually be offset by six (6) bytes to leave room for a
descriptor in front of the packet data.

stuff cs of buffer

ax,DEF_pkt_data+true_data{sil ; address of true data

data_off(sil,ax ;
desc_seglsil,cs
ax,DEF_pkt_datalsil ;
desc_off[sil,ax
Entry_020

put in packet
; segment of descriptor
offset of descriptor

; Handle simple case of constrained array

Entry_010:

data_seglsil,cs ;
ax,DEF_pkt_data{sil ;
data_off[sil,ax H

; ATOMIC action follows... Queue entry,

Entry_020:
xchg
lea
pushf
cli
call
mov
or
jz

’

-

mov
mov
Entry_030:
mov
add
Loop

push
push

bx,dx ;
si,DEF_entry_queueldil ;

INSERT H
cx,DEF_entry_wait(di) ;
cx,cX ;
Entry_040 H

server is waiting on accept, clear all

si,dx ;
cx,DEF_num_entries{si]

stuff cs of buffer
address of data

if waiting signal acceptor

bx := buffer; dx := TCB_base
si points to entry queue

place buffer descriptor on entry Q
get entry WAITING flag

test waiting flag

go on if not

waiting flags and signal it

get TCB

DEF_entry_table+DEF_entry_wait(si],0 ; clear wait flag

si,size DEF_entry_rec ;
Entry_030

cs :
dx i

go to next entry

segment of semaphore
offset of semaphore (first in TCB)

-230-

Distributed Issues Final Report

call VRTIF_Signal_I ; wake up server

Entry_040:

popf ; restore interrupt level
ret ; return to interrupt handler

P IEER)
srFrrsEsSsI I IETETYS lllllll'll'Illll'lllllllllIIIIIllllllllllllllllllllllIIIl

’

Rendezvous_End -
This code section is executed upon receipt of a message completing
an accept body (end rendezvous)

Post buffer containing Out Parameters and signal task to wake up
INPUTS:

BX = Buffer descriptor pointer
SI = Buffer Pointer

Rendezvous_End:

mov si, (si+DEF_pkt_tid] ; fetch task id of caller

add si,si ; mslt by four to make index

add si,si

mov si,TASK_DIRECTORY.DTCB_dir_TCB[si) ; fetch task control block
mov (si+DEF_TCB_REPLY],bx ; provide caller with reply buffer
push cs ; push segment of caller semaphore
push si ; push offset of same (TCB)

call VRTIF_Signal _i ; wake up caller

ret ; to finish interrupt

’

REMOVE - Remove Entry that is on entry queue

Inputs: BX points to entry Q
Output: BX points to buffer descriptor that was dequeued ;

All other registers are preserved

R R R R R R R R R R R R R R R R)

REMOVE :

'

push ax
push si

do list operation as atomic action

pushf

cli

mov si, [BX+DEF_NEXT_PTR] ; fetch buffer descriptor
mov ax, [si+DEF_NEXT_PTR] ; get next buffer

-231-

Distributed Issues Final Report

mov [BX+DEF_NEXT_PTR],ax ; update queue head
popf

mov bx,si ; return pointer in BX
pop si

pop ax

ret

Rl i a0 e a it ea s a e it s it iiiiiiiirattsiiridiaciiisiiiisiisisin

; INSERT - INSERT Entry onto the end of an entry queue :
; Inputs: SI points to entry Q H
H BX points to buffer descriptor H
: H
; Outputs: SI points to last entry on Q ;
; ;
; All other registers are preserved ;

RN R R R R R R

INSERT:
push ax

; do list operation as atomic action

pushf
cli
INSERT10:
mov ax, [si+DEF_next_ptr] ; get next buffer on entry queue
or ax,ax ; see if end of list
jz INSERT20 ; end of list, go insert it

; this is not end of list, keep searching

mov si,ax
jmp INSERT10

; found spot on list, insert it
INSERT20:

mov [si+DEF_next_ptr], bx ; put on end of list
popf ; restore interrupt flag

pop ax
ret
align &
DUMMY_SEM dw 3 dup (?) ; dummy semaphore for making zombie tasks

cseg ends

end

-232-

Distributed Issues Final Report

THIS PAGE INTENTIONALLY LEFT BLANK.

-233-

Distributed Issues Final Report

page 55,132
TITLE 10 - Distributed Ada Network 10

R R R R R R R R R R

‘

FILE: DA_Il0.ASM ;
10 MODULE - Low Level Network Functions H
Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA ;
R R R R R R R R R R R R R R R R R R R
The 10 module provides the low_level interface to the network ;

hardware and receive message buffering.

This code is loaded into all processors, and adapts to the

the network hardware in its host. Which routines are used is ;
determined solely by the calls made from the application code H
and the messages received. ;

The 10 interface is implemented as four separate functions: ;

Initialize H
Transmit H
Receive ;
Interrupt Procesing ;

‘

The initialize function obviously must be called prior to any ;
other, and establishes the interrupt vector and enables, as H

well as prepares the hardware for use. It is also responsible ;
for initilizing data structures used to buffer incoming packets. ;

The Transmit function is used by one task at a time, and is ;
guarded by a semaphore to provide mutual exclusion. Once the ;
transmit resource is granted, the data is copied into the on-card;
buffer and sent out via hardware commands. (Normally, hardware ;
packet acknowledge should be provided, however Ethernet does not ;
support this, so we have implemented an acknowledge with time-out;
protocol that provides network error detection. Note that H
acknowledement packets take priority over regular traffic. H
Currently, no re-try is supported, however it would be a rather ;
simple matter of keeping a transmit buffer queue and retransmit ;
on errors. The more serious problem is how to insure real-time ;
performance in the presence of multipie retries. Obviously the ;
retry count would have to be programmable (and possibly time ;
sensitive. [f an acknowledgment times-out, a reconfiguration :
operation is executed to recover the system in a reduced state. ;

The Receive function is provided to assist in transferring the ;
data to the requested destination. It clears the outstanding ;

acknowledgement request. :

‘
The Interrupt Processing handles both transmit complete and ;
reception interrupts. For transmit complete, the resource is ;

simply made available again by performing a V operation on the ;

-234-

Distributed Issues Final Report

; trasmit semaphore. For Receive interrupts, a buffer is allocated;
; from a linked list of fixed sized buffers. Then the incoming
; data is copied to the buffer and the distributed runtime is

; invoked to process the request. It may simply post the fact the ;

; message has arrived (and queue to an entry), or it may cause a ;
; task to resume which involves signalling (V - operation) the
; suspended task.

'

; ;

; Refer to individual procedure headers for parameter information ;

; and calling requirements. H

h h

; Ver Date Description H

; H

; 0.1 Nov-88 : Initial prototype H

; 0.2 Dec-89 : Added Packet Acknowledge/Error Detection, and ;

H allowed for system restart (compiler initialized ;

H data is restricted to a WARM_START flag.) ;

; 0.3 Feb-90 : Greatly improved multi-packet processing and H

; interrupt handling. ;

R R R R R R R R R R R R R R R R
.model large
include DA_DEF.ASM ; contains software definitions
include DA_HW.ASM ; contains hardware specifics

public 10_Network_Init, I0_Xmit

public TX_READY ; semaphore
public 10_ALLOCATE, IO_DEALLOCATE

pubtic Ack_Check

pubtic outchr ; for debug

public RECEIVE_FLAG ; for sync_phase 10
extrn VRTIF_Signal_I:far ; signal semaphore
extrn VRTIF_Mait:far ; wait on semaphore "pP"
extrn VRTIF_18259:abs ; address of 8259

extrn VRTIF_vector_base:abs ; base of vector table
extrn VRTIF_timestamp:far ; time stamping routine

extrn Setup:near
extrn NET_Receive:near

; Initialize Network I/F
; part of runtime code
extrn Shut_Down:near ; if network ack failure
extrn COLD_START:word ; N2 if this is first pass thru

extrn SYNC_PHASE :word ; determines operational phase
extrn NET_TABLE:byte ; provides network addresses

extrn PlID:word ; THIS processor’s 1D #

extrn TASK_DIRECTORY:word ; (DTCB) table of tasks

extrn WATCH_DOG:word ; (DTCB) tabie of watch dog timers
extrn WATCH_LIST:word ; (DTCB) list of processors to watch

-235-

Distributed Issues Final Report

; software support buffers

0

buff_size equ 2048 ; bytes in local buffer
num_buff equ 20 ; number of buffers
min_packet equ 64 ; minimum number of bytes in a packet

cseg segment common

org 2800H ; makes listings eaiser to use!
assume cs:cseg,ds:cseg,es:cseg ; ,ss:sseg

Il'llllllllllllIlllllllIllllllIllllllllllllllIlllllllllllllllll

[0_Network_Init:

push ax
push bx
push cx
push dx
push ds

; Do low tevel Network Interface Card Initialization

catt Setup

; init network variables

mov [SEQUENCE],0 ; zero out sequnce counter
mov ax,cs

mov ds,ax

mov {RECEIVE_PTR] ,eth_recv_begin ; receive pointer

mov [TX_READY],1 ; init semaphore

mov [TX_READY+2]},0

mov {TX_READY+4],0

mov [RECEIVE_FLAG],O0 ; init flag

Initialize Receive buffer list

'

lea ax,RX_BUFF_Q

mov [RX_BUFF_HEAD] , ax

lea ax,RX_BUFFER ; points to actual buffers

mov cx,num_buff ; number to link

lea bx,RX_BUFF_Q ; points to buffer descriptors
Init30:

mov {bx],ax ; put in current buffer pointer

lea dx, [bx+4] ; DX is address of next descriptor

mov [bx+2] ,dx ; put it in as next pointer

-236-

R

Distributed Issues Final Report

add ax,buff_size ; point AX at next buffer
mov bx,dx : change descriptor pointer to next
Loop Init30

; now fix up last pointer

mov word ptr [bx-2],0 ; terminate list

; Initialize Outstanding Acknowledgements lists

xor ax,ax ; indicate none outstanding

nov LACK_PENDING] , ax

mov [ACK_HOLDING] ,ax ; or waiting to be xmitted

lea si,ACK_RECORDS ; all acks are free

mov [ACK_FREE],si

mov cx,num_buff-1 ; number to link (same as number of buffers)
Init40:

lea dx, [si+ack_size]; DX is address of next descriptor

mov [si],dx ; put it in as next pointer

mov si,dx ; change descriptor pointer to next

Loop Init40
; fix up last pointer
mov word ptr (si],0 ; terminate (ist

; load interrupt vector if this is a cold start

test word ptr (COLD_START],OFFFFH

jz Warm_Start

mov ax,0

mov ds,ax

mov bx,VRTIF_vector_base+(vector_number*4)
mov ax,offset Interrupt_Handler

mov {ox], ax

mov ax,cs

mov {bx+2] ,ax

; Note: Preliminary board initialization was done in SETUP code, now
; just enable interrupts
Warm_Start:

mov dx,VRTIF_18259+1

in al,dx ; get interrupt mask

mov ah,OFEH ; mask to clear zero bit
mov cl,vector_number ; load shift count register
rol ah,cl

and al,ah ; enable level

out dx,al ; update controller chip

-237-

.
'

Distributed Issues Final Report

mov dx,nic_cr ; command register

mov al,eth_access_page_0 ; access NIC page 0 registers
out dx,al

mov dx,nic_imr ; interrupt mask register

mov al,nic_prx+nic_ptx ; enable xmit/recv interrupts
out dx,al

pop ds

pop dx

pop cx

pop bx

pop ax

ret

routine for debugging only - all registers preserved
Prints character in AL

outchr:
push dx
push ax
mov dx,3fdh
out10:
in al,dx
and al,20h
jz out10
pop ax
mov dx,3f8h
out dx,al
pop dx
ret
header_size equ 10 ;words:dst=3,src=3,RCP=1,priority=1,seq=1, length=1
rcp_offset equ 12 ; bytes to receive control pointer

‘

'

lllllllllIlllllllllllIIlllll’l'llIlIIIIIII'llllllll'l,',l'l'lll'll

XMIT - transmit the message specified by parameter list H

starting at address is at SS:bp+DEF_PARM_LIST ;
NO GENERAL REGISTERS ARE PRESEVED ;
NOTE: During system synchonization this routine works H

differently so as to avoid use to the vendor runtime and ;
provide more control to the appplication (no ack timeout);

This is designated by the boolean '"SYNC_PHASE" H
T Tt it a i ia i i i i aiaiiidiiiiiiiiiiiisiisisiiiiiiniiiiis
INPUTS:
PID ; destination processor 1D
CMD ; command for this packet
TID ; Task for which the command operates
-238-

\
1
__

Distributed Issues Final Report

ENTRY ; entry ID for the command (if applicable)
MY_TID ; originating Task ID
PROFILE ; profile pointer (in CS) for entry parameters
MODE ; current calling mode (in or out)
PARM_LIST ; pointer (seg/offset) for parameter list
10_Xmit:
push bp
mov bp,sp ; mark stack

.

.

.

test [SYNC_PHASE],OFFFFH ;
inz Xmit_05

see if in sync phase, if so, don’t use rts

Normally, we use vendor runtime to lock xmitter

push cs H
lea ax,TX_READY
push ax :

call VRTIF Wait

I

Now get acknowledge request buffer

call Ack_Altocate H
jmp Xmit_08

push segment of transmit ctri semaphore

push offset of semaphore

; do p semaphore operation

returns ack buffer ptr in BX ;AAA

But During SYNC_PHASE we simply lock with a clear
Xmit_05:

mov [TX_READY],0

xmit_08:

‘

v

put header in packet buffer

cld ;
les di, [CARD_RAM] ;
mov si, [bp+DEF_PID] ;
mov cl,3 H
shl si,cl ;
lea si,NET_TABLE([si] ;
mov cx,DEF_addr_size ;
rep moVSW ;
mov si, [PID] ;
mov cl,3 ;
shl si,ct H
lea si,NET_TABLE[si) ;
mov cx,DEF_addr_size

rep MmOVS W ;

skip over length field for now

add di,2

; set it not busy, set by Interrupt rtn

set auto increment

point to hardware buffer area
fetch Destination Task PID

mult by 8 (bytes/address entry)
index into address table

fetch address of dest.

in words

copy in dest address

get our processor id

mult by 8 (bytess/address entry)
index into address table

fetch our address

copy in source addr

Update Sequence Number and put it in packet and acknowledge entry

-239-

Distributed Issues Final Report

mov ax, [SEQUENCE] ; get sequence number

inc ax

stosw ; put in packet

mov [SEQUENCE] , ax ; update

test [SYNC_PHASE) ,OFFFFH ; see if in sync phase

jnz Xmit_09

mov [bx+ACK_SEQ] , ax ; put it in outstanding requests ;AAA

call Ack_Add ; add this ack entry to the pending list ;AAA
Xmit_09:

mov ax, [bp+DEF_CMD) ; get packet command

stosw ; put in buffer

mov ax, [bp+DEF_TID] ; get Destination TID

StOSW
H

mov ax, [bp+DEF_ENTRY] ; if entry applies

stosw

mov ax, (PID] ; fetch my processor ID

stosw

mov ax, [bp+DEF_MY_TID] ; get my task ID

stosw

; copy the parameters into the packet buffer. Use the TCB definitions
; to determine how many parameters, their size, and what type (ie. must

allow for unconstrained arrays).

mov si, [bp+DEF_Profilel ; get parameter profile ptr

Llodsw ; get number of parameters
Xmit_10:

or ax,ax ; see if done

jz Xmit_30 ; if done

mov [XPARM_COUNT] , ax ; update parameter count

mov ax, [si] ; get parameter Mode

mov cx, [si+2] ; fetch parameter type/length

add si,b

mov [PROFILE_PTR],si ; save profile pointer

lds si, (bptDEF_parm_list]l ; point to parameter list

push [si) ; segment of data

push [si1+2] ; offset of data

or cX,CX ; see if unconstrained type

jge Xmit_15
;
; process an unconstrained object as a parameter, always copy descriptor

push {si+4] ; descriptor segment
push {si+6] . offset of descriptor
add si,8
mov word ptr (bp+DEF_parm_list],si ; update parameter list index
pop si ; get offset of descriptor
-240-

Distributed Issues Final Report

pop ds ; get segment of descriptor
push ax ; save MODE of parameter

mov cx, [si+DEF_Llow_desc] ; get low bound of constraint
mov es: [di),cx ; put in packet

add di,2

mov ax, [si+DEF_high_desc) ; get high bound of constraint
StOSW ; put in packet

mov dx, [si+DEF_size_desc] ; get size of object

mov es: [di),dx ; put in packet

add di,2

; Copy the parameter data iff MODE is correct and array is not null

pop bx ; get mode of parameter

pop si ; get offset of data

pop ds ; get segment of data

and bx, [(bp+DEF_MODE] ; see if we should copy data

jz Xmit_20 ; if not, go on

sub ax,cx ; compute difference in range

inc ax ; adjust to include end points

jle Xmit_20 ; if array is empty go to next parm
mul dx ; compute size in words (descriptor)
mov cx,ax ; put in count register

rep movswW ; transfer to packet buffer

jmp Xmit_20 ; 30 on to next parameter

; Constrained parameter, CX is length in words, copy it into packet buffer

Xmit_15:
add si,4 ; move to next object address
mov word ptr [bp+DEF_parm_list],si ; update parameter list index
pop si ; get data offset
pop ds ; get data segment
and ax, [bp+DEF_MODE] ; see if mode is right
jz Xmit_20 ; skip copy of data if not
inc cx ; round up to nearest word count
shr cx, 1 ; by adding one and divide by two
rep movSwW
Xmit_20:
mov ax,cs ; restore data segment
mov ds, ax
mov si, (PROFILE_PTR} ; get next parameter profile
mov ax, [XPARM_COUNT] ; get the counter back in ax
dec ax ; count down

imp xmit_10

lllllllllllllllllllllIlIllllIlllllllllllllllIllll!llllllll!lllllllIllltllllllll
; Setup NIC registers to begin transmission ;
; Must prevent a RECEIVE interrupt from arriving, which would interfere :
; with the registers being updated for Transmission. ;

-241-

Distributed Issues Final Report

; load start address of packet

0

Xmit_30:
pushf ; save interrupt status
cli ; disable any interrupts
mov dx,nic_cr ; select Page 0
mov al ,eth_access_Page_0
out dx,al
mov dx,nic_tpsr ; page start register
mov al,eth_xmit_buf_start ; transmit page at DC00:0000
out dx,al
; load length of packet
mov ax,di ; save current packet pointer
les di, {CARD_RAM] ; point to hardware buffer area
sub ax,di ; subtract base to get size in bytes
add di ,DEF_pkt_length ; add offset to data length field
Stosw ; stick in PACKET length
cmp ax,min_packet ; make sure it is at least minimum
jge Xmit_40
mov ax,min_packet
Xmit_40
mov dx,nic_tber0 ; load number to transfer into H/W
out dx,al
mov dx,nic_tbert
mov al,ah
out dx,al
; start transmit
mov dx,nic_cr
mov al,send ; command to initiate transmission
out dx,al
popf ; restore interrupt status
pop bp ; restore bp
ret 18 ; return and remove stack frame

AR R R R R N N N N N NN NN N]

H INTERRUPT SERVICE ROUTINE

R R R R R R R R R I

Currently, this must have a stack frame similar to other vendor

; interrupt routines so that the interrupt-mode Signal routine will
; be able to find the interrupt return address and status

’

Interrupt_Handler Label far
push bp
mov bp,sp
push ax

-242-

push
push
push
push
push
push
push

Distributed Issues Final Report

bx
cx
dx
si

ds
es

; First keep interrupt request line from triggering during processing

; of interrupts (and clearing interrupt bits)

cld
mov
mov
out

mov
mov
out

; for all string operations
dx,nic_cr ; select Page_0
al,eth_access_Page_0
dx,al
dx,nic_imr ; interrupt mask register
al,eth_ints_disabled ; disable all interrupt requests
dx,al

; Process any packet receptions

; NOTE: since this is done inside the interrupt routine, interrupts

; are disabled, and therefore there is no interference from other

; interrupts is expected (especially clock interrupts).

; Careful attention to race conditions is necessary to prevent a received
; buffer from not getting processed and interrupts getting lost

Receive:

H point DS:SI to packet in hardware buffer

;$8S;

lds
add

or
jnz
imp

si,cs: [CARD_RAM] ; source is ethernet RAM

si,cs: [RECEIVE_PTR]; add current receive buffer page address
ax, [sil ; fetch status into AL, NEXT PTR into AH

; since we only receive good packets ignore stat
al,al ; see if any packet arrived (if not zero!l)
RECV100 ; go on if data is there
End_Receive ; otherwise, leave the receive section

:$88; No data left, go ashead and clear receive interrupt
RACE CONDITION HERE...

;$88;
;388
;$%$
;388
;$88;
;$88;
;$88;
2324

put

: SSSRECV020:

;888

mov dx,nic_isr ; clear any pending receive interrupts
mov al,nic_prx ; receive interrupt bit

out dx,al ; clear receive interrupt (if present)
in Little delay, then make sure nothing just arrived..

mov ax,10

dec ax

243

Distributed Issues Final Report

334 jn2 RECV020
;338 mov al, [si] ; see if something has arrived
;388 or al,al
;888 jz RECVO030 ; if nothing, good... no worries
:$88; something did just arrive, see if we will see the interrupt
;388 in al,dx ; fetch interrupt status now
1338 and al,nic_prx ; see if a receive interrupt was shut off
;538 jz RECV040 ; if we lost the interrupt go sound alarm
;1 $SSRECVO30:
;388 jmp Check_Xmit
;$88;
;$88; We shut off a receive interrupt by accident
;$38;
;$SSRECVO40:
;338 mov al,7 ; 33 print bell
334 call outchr
;338 mov al,’_’ ; visible evidence
;333 jmp Check_Xmit
H 33
RECV100: ; @3@ check for non recieve ok ptr
cmp al,1 ; is it a one?
jz RECV101
mov al,7 ; 33@ print bell
call outchr
mov al,’?! ; 1f non-zero print something special
call outchr
RECV101:
xor al,al ; zero low byte, leaving a new pointer
sub ax,eth_offset ; correct for memory vs page offset
mov cs: [RECEIVE_PTR],ax ; get ready for next reception
add si,b ; skip over receive header (status/page, count)

SI nuw points to first part of transmitted packet

; First check to see if it is an ACK message

mov ax, [si+DEF_pkt_cmdl ; check message type
or ax,ax ; command is negative for Acks
jns RECV105 ; 1f regular packet, go on

; It is an ACK message. Clear it from pending list and free up buffer

mov byte ptr [si-4},0 ; clear status flag for next time
call ACK_REMOVE check off the ack
jmp END_RECEIVE all done with one packet

: Received a real message, first reload watchdog timer for the source PID
RECV105:
mov di, [si+DEF_pkt_my_pid] ; get source processor ID

add di,di

-244-

'

Distributed Issues Final Report

mov cS:WATCH_DOG [di] ,DEF_WATCH_DOG_LIMIT

Allocate a buffer, and transfer data to the buffer
after the following call, the buffer descriptor is in BX. DO NOT DESTROY BX!

mov ax,cs ; destination segment is CS

mov es,ax

call 10_Allocate ; destination offset is buffer header in BX
mov di,cs: (bx) ; get address of buffer in DI

mov ax, [si+DEF_pkt_length] ; get size of valid packet in bytes
inc ax ; make sure we get odd packets

shr ax, 1 ; convert to words

Now transfer memory from hardware buffer pages to software buffer.

Note that the buffer will wrap around at 4000H back to 2600.

Also, the first word of each page is cleared after the data is removed
so that received packets can easily be detected. (Since the header bytes
are the last thing written, you are guaranteed that the whole packet has
been received.)

mov dx,80H-2 ; page size in words (reduced to get aligned)
RECV110:

cmp ax,dx ; see if more than a page

jige RECV120

mov dx, ax ; otherwize only move the remaining words
RECV120:

mov cx,dx

rep movsw ; do the transfer

push si

dec si ; make sure we are in page just processed

and si,OFFOOH ; backup to its beginning

mov byte ptr [si},0 ; and clear status byte for next time

pop si

cmp si,eth_recv_end ; see if at end of hardware buffer

jnz RECV130

mov si,eth_recv_begin; reset pointer to begin
RECV130:

sub ax,dx ; reduce total count by those moved

jz RECV140 ; finished if so

mov dx,80H ; keep page alignment

jmp RECV110
RECV140:

mov ax,cs ; restore data segment

mov ds,ax

Check what phase we are in. [f Sync_Phase, do not ack the message or
invoke the distributed runtime.

test [SYNC_PHASE) ,0ffffH ; NZ means true (sync phase)
j2 RECV150

-245.

Distributed Issues Final Report

System is still in synchronization phase, simply Log that the message
arrived by setting the RECEIVE FLAG with the buffer descriptor

During sync phase, only one message can be recieved, so no concern

; for overwriting the RECEIVE_FLAG exists.

mov
imp

; Queue an ACK

[RECEIVE_FLAG] ,bx

End_Receive ; done receiving

for the sendor then...

Call Receive portion of Distributed Runtime code to determine

; what should be done with the newly arrived packet.

RECV150:
mov si, [bx] ; get beginning of buffer back
call Ack_Hold ; first queue an Ack message to go out ;AAA
call NET_Receive

; END RECEIVE:

End_Receive:

do check on buffer, if no packet there, clear interrupts

lds si,cs: [CARD_RAM] ; source is ethernet RAM
add si,cs: [RECEIVE_PTR}; add current receive buffer page address
mov ax, (si) ; fetch status into AL, NEXT PTR into AH

; since we only receive good packets ignore stat
or al,al ; see 1f any packet arrived (if not zero!)
jz Clear_Interrupt ; go on if no data is there
jmp Check_Xmit

.

; No data left,

go ahead and clear receive interrupt

; RACE CONDITION HERE...

Clear_Interrupt:
mov dx,nic_isr ; clear any pending receive interrupts
mov al,nic_prx ; receive interrupt bit
out dx,al ; clear receive interrupt (if present)

H Check if we

won the race...

mov ax,10
CI10:
dec ax
inz c110
test byte ptr (si), 0FFH ; see if something just arrived
jz Check_Xmit

Something just arrived, see if we can see the interrupt

in al,dx ; get interrupt status
and al,nic_prx
jnz Check_Xmit ; ok, we still see the interrupt
mov al,7 ; print bell!
-246-

Distributed Issues Final Report

call outchr ; interrupt has been lost! due to race
mov al,’'x’
call outchr

Now check for transmit complete interrupt

Check_Xmit:

mov ax,cs ; insure data segment is for DRT
mov ds,ax

mov dx,nic_isr ; get interrupt status

in al,dx

and ax,nic_ptx ; check for packet transmitted
jnz Transmit

. wg

No xmit complete interrupts, see if there is a ACK to go out

test [ACK_HOLDING) ,OFFFFH ; see if any acks are waiting to go out

jz EOI ; nothing to go out

mov ax, [TX_READY) ; check if transmitter is busy

or ax,ax

jle EOI ; still busy, just exit

call ACK_Send ; otherwise send out one of the holding acks
jmp EOI

Transmit complete, see if an ACK is waiting to go out. Jf so,
send it. Otherwise signal READY semaphore.

LTI TR YN

Transmit:
out dx,al ; clear the transmit interrupt

test [ACK_HOLDING) ,OFFFFH ; see if any acks are waiting to go out

jz transmit10

inc word ptr [TX_READY] ; give credit for transmit complete
catl ACK_SEND ; 9o issue the ack

jmp EOI

Only free up transmitter if no acks waiting to go
(and out of sync phase, Note: Acks never occur during sync phase)

'
'
’

transmit10:
test [SYNC_PHASE] ,OFFFFH; if sync phase, indicate free xmitter
jz transmi t20
mov [TX_READY],1 ; by setting it ready
jmp {s]}
transmit20:
push cs ; segment of semaphore
lea ax,TX_READY ; offset of semaphore
push ax

catl VRTIF_Signal_l ; signal ready for next 10

-247-

Distributed Issues Final Report

; Interrupt processing has been completed. Any new interrupts that have
; come in since clearing the status bit will be recorded by the 8259

; when we enabte the 3Com card interrupt mask. This creates the edge

; trigger necessary for the 825%

EOI:
; Clear the 8259 Interrupt Request

cli ; make absolutely sure we don’t nest

mov dx,nic_imr ; point to mask register

mov al,nic_ptx+nic_prx ; enable transmit (tx) and receive (rx) ints
out dx,al

mov al ,NET_EO! ; issue EOl to interrupt controller

mov dx,VRTIF_18259

out dx,al

pop es ; restore registers and flags (interrupt)
pop ds

pop di

pop si

pop dx

pop cx

pop bx

pop ax

pop bp

iret

R R R R N N N N NN NN R R]

; 10_ALLOCATE - Allocates next buffer from Avail list
; Return BX pointing to buffer queue index.
H By design, the buffer should queue should never be empty.

; Destroys AX BX has new descriptor pointer

’
""""" FEPTR i i iadiisiiiisiiiisiiiiiiiiiiaiiiiiiiiiiiig
[O_ALLOCATE:

pushf

cli

mov bx,CS: (RX_BUFF_HEAD) ; fetch head pointer
or bx, bx ; see if empty

jnz 10_ALLOC10 ; goon if not

; Normally, might raise storage error here, but design prevents
; exceeding buffer capacity unless there is some code flaw.

popf

mov al,'M’ ; print message
call outchr

mov al,'T! H and

calt outchr

int 3 ; trap

-248-

Distributed Issues Final Report

; Remove buffer descriptor from free lList

10_ALLOC10:

mov ax,CS: [bx+DEF_NEXT_PTR} ; fetch next pointer

mov CS: [RX_BUFF_HEAD] , ax ; pull buffer off List, replace head
xor ax,ax ; null next pointer in buffer

mov CS: [bx+DEF_NEXT_PTR],ax

popf

ret

....... ssesesnnenacanasa csscssess essesscnnrns esverveennens

. v .
Pisiiiiiisaiis R

; TO_DEALLOCATE - Deallocates buffer into Avail list

H Takes B8X pointing to buffer descriptor.

H By design, the buffer should queue should never be full.
; Destroys AX

>-
-
-
o
[
>
et
m

pushf

cli

mov ax, [RX_BUFF_HEAD] ; get head of list

mov {bx+DEF_NEXT_PTR], ax ; put behind this entry
mov (RX_BUFF_HEAD] , bx ; make this entry new head

H Return BX pointing to Ack entry.

H By design, the free list should never be empty.
; Destroys AX , BX has new descriptor pointer ;
: Interrupts are disabled to maintain list consistency

llllllllll'lIlIIllIlllllllllllllll'lllllllIllllllllllllllllllllllllllllll

ACK_ALLOCATE:

pushf

cli

mov bx, [ACK_FREE] ; fetch head pointer
or bx, bx ; see if empty

jz ACK_ALLOC10 s if failure

; Remove buffer descriptor from free list

mov ax, [bx+ACK_NEXT} ; fetch next pointer

mov [ACK_FREE] ,ax ; putl buffer off List, replace head
xor ax,ax ; null next pointer in buffer

mov {bx+ACK_NEXT] ,ax

popf ; restore interrupts

ret

- we

Normally, might raise storage error here, but design prevents

-249-

Distributed Issues Final Report

; exceeding buffer capacity unless there is some code flaw.

ACK_ALLOC10:

popf

mov al, '™’ ; print message
call outchr

mov al,'T! ; and

call outchr

int 3 ; trap

...

IR N N NN N NN

; ACK_DEALLOCATE - Deallocates buffer into Free list ;
H Takes BX pointing to buffer descriptor. H
H By design, the ack list should never be full prior to call. H
; Destroys AX H

R AR R R R N N NN N RN NN

ACK_DEALLOCATE:
pushf
cl
mov ax, [ACK_FREE} ; get head of list
mov (bx+ACK_NEXT], ax ; put behind this entry
mov [ACK_FREE] ,bx ; make this entry new head
popf
ret

R N N N N RN NN NN]

; ACK_ADD - Add another ack entry to the pending list

H Input: BX is ack entry
H ax is destroyed
Ack_Add:
push si
push di
push ax ;88& save regs
push [
push di
and ax,0fffH ; only use 0-4095
push ax ; push sequence # 88&%&
call VRTIF_Timestamp ; time-stamp it &&&
pop di
pop cx
pop ax ; &8& restore regs
pushf
cli
mov ax,cs: [ACK_TIMER]
add ax,ack_delay ; number of ticks
mov cs: {bx+ACK_COUNT], ax

; Find the end of the ack list

-250-

lea

ack_add10:

mov
or
jz
mov
imp

ack_add20:

popf
pop

pop
ret

si,ACK_PENDING

di,cs:sil
di,di
ack_add20
si,di
ack_add10

cs:{si),bx

di
si

Distributed Issues Final Report

; point to header

; fetch next pointer
; see if at end

; jump if so

; go down the list

; put behind this entry

AR RN N R N R RN NN

ACK_REMOVE - Remove ack entry from the pending list.
THIS 1S ONLY CALLED DURING RECEIVE INTERRUPT ROUTINE

'

’

’

’

S1 : points to ACKNOWLEDGE PACKET BUFFER IN HARDWARE

relative to the DS segment which points to the
hardware packet buffer (NOTE: ACK’s are never
unloaded from the hardware buffer).

ax,bx,si,cx destroyed

NOTE: ACK’s have the SEQUENCE they are acking in the normal
sequence field.

Ack_Remove:

Ack_removel0:

ack_remove20:

movy

push
push
push
and
push
call
pop
pop
pop

lea

mov
or
jz
cmp
jz

mov

cx, [si+DEF_pkt_sequence] ; get SEQUENCE value

ax

cx

di

cx,0fffH

cx
VRTIF_timestamp
di

cx

ax

bx,ACK_PENDING

si,cs:(bx)

si,si
ack_remove30
cx,cs:{si+ack_seql
ack_removed5

bx,si

;888 save regs

; only use 0-4095
; 88& push for timestamp
; 8&&

; &8& restore regs

; get next pointer

; exit if at end of list

; all done (not there!!)

; check for matched sequence

; bx is always the previous pointer

-251-

Distributed Issues Final Report

jmp ack_remove10
; Found the entry, remove from pending, and place it on FREE list

ack_removed5:

mov ax,cs: {sil ; get next in list

mov cs: (bx],ax ; link over removed entry
; put removed node into free list

mov ax,cs: [ACK_FREE] ; get head of list

mov cs:[si],ax ; put behind this entry

mov cs: [ACK_FREE],si ; make this entry new head

ack_remove30:
ret

: ACK_HOLD - Add another ack message to the holding list

; Input: SI points to received message

Ack_HOLD:
push bx ; save message descript--
call ACK_ALLOCATE ; fetch a free ack entry
mov ax, [si+DEF_pkt_my_pid] ; get pid of sender
mov {bx+ack_pid], ax ; put in record
mov ax, [si+DEF_pkt_sequencel; fetch received Sequence #
mov [bx+ack_seq], ax ; stick in record

; put at end of HOLDING list

push si
push di
lea si,ACK_HOLDING
ack_hold10:
mov di, (si] ; fetch ptr
or di,di ; see if at end
jz ack_hold20 ; jump if so
mov si,di ; go down the list

jmp ack_hold10

ack_hold20:

mov [si], bx ; put behind this entry

pop di

pop si ; restore received message pointer
pop bx ; restore message descriptor

ret

I} ll"llllIl'Ill’l"Illlllll'llllll'lll'lIllll'llll'l'll'llll'!ll'lllll

; ACK_SEND - Transmit next acknowledge message on the HOLDING list

-252-

Distributed Issues Final Report

NOTE: This is ONLY called during interrupt servicing when the
transmitter is available. This prevents interference with the
10_XMIT routine above. (They both access the H/W)

INPUTS:
The PID and SEQUENCE number to acknowledge is at the head of

the “HOLD" queue.

Acknowledgements simply have: DST, SRC, length, ACK_SEQ, ACK_CMD

ACK_Send:

push ax ; save all registers

push bx

push cx

push dx

push si

push di

push ds

push es

dec word ptr [TX_READY) ; mark transmitter as busy

’

.
.

.

Get entry off of HOLDING list

mov bx, [ACK_HOLDING)

mov ax, [bx] ; get next pointer

mov [ACK_HOLDING),ax ; remove tnis ACK from holding list
mov si, (bx+ack_pid] ; get processor id of originator
mov dx, [bx+ack_seq) ; and sequence #

call ACK_DEALLOCATE ; put on free list

Build acknowledge packet

cld ; set auto increment

tes di, [CARD_RAM] ; point to hardware buffer area
mov cl,3 ; 8 bytes per net table index
shi si,cl ; convert PID to net table index
lea si, NET_TABLE[si] ; fetch address of dest.

mov cx,DEF_addr_size ; in words

rep movsSwW ; copy in dest address

mov si, (PID] ; get our processor id

mov cl,3 ; mult by 8 (bytes/address entry)
shl si,cl ; index into address table

lea si,NET_TABLE[si] ; fetch our address

mov cx,DEF_addr_size

rep movsw ; copy in source addr

length field is fixed to include up to command only

mov ax,DEF_pkt_cmd+2
stosw ; put in buffer

-253-

Distributed Issues Final Report

; Put ACKING Sequence Number in packet

;

mov ax,dx ; get acking seq number

Stosw ; put in buffer

mov ax,DEF_ACK ; set command to ACK

stosw ; stuff in buffer
P a e aa T et aiaaiar i i i iiiiiiiiaetiiiaitiniianianiinieaeiiniiiis
; That’s it for loading the packet buffer, now kick off transmission ;
; Setup NIC registers to begin transmission ;
R R R R R R R R R

mov dx,nic_cr ; select Page_0

mov al,eth_access_Page_0

out dx,al

mov dx,nic_tpsr ; page start register

mov al,eth_xmit_buf_start ; transmit page at DC00:0000

out dx,al
; load length of packet

mov ax,min_packet ; make it is the minimum

mov dx,nic_tbcr0 ; load number to transfer into H/W

out dx,al

mov dx,nic_tber1l

mov al,ah

out dx,al
; start transmit

mov dx,nic_cr

mov al,send ; command to initiate transmission

out dx,al

pop es

pop ds

pop di

pop si

pop dx

pop cx

pop bx

pop ax

ret

LR N N N N N NN RN RN R]

H ACK_CHECK - Check to see if any acknowledgment requests are over
; ACK_LIMIT clock interrupts old. Cause shutdown if so.

llllllllllllllIll'l'llllll'llll'lIllllllllIllIl'lllllllllllllllllllllll
H INTERRUPT SERVICE ROUTINE

L RN NN NN N NN NN NN NN NN
; This routine is invoked by the runtime timer interrupt routine to

; allow the network [0 funtions to be checked. As a result,

; ALL REGISTERS except AX and DS MUST BE PRESERVED!!!

H Note: because this routine is run every S milliseconds, it has

-254-

Distributed Issues Final Report

; been optimized to take up little time in the typical case. For

; this reason, there are three exit points which are executed in
H straight line code.

ACK_CHECK:
mov
mov

'

ax,cs
ds,ax

; For each communicating processor, check watch dog timer

push
push
push

ACKOS:

dec
jz
add
Loop
ACKOS8:

pop
pop
pop

.

; Now see if any outstanding messages

’

or
jnz
retf

ACK10:

retf
ACK20:

si

di

cx

si, [WATCH_LIST)
cx, [si]

ACK08

si,2

di, Isi]
di,di

word ptr WATCH_DOG[di]

ACK20
si,2
ACKOS

cX
di
si

ax, [ACK_PENDING]
ax,ax
ACK10

si

si,ax

ax, [ACK_TIMER]

ax

(ACK_TIMER], ax
ax, [si+ack_count]
ACK20

si

al,TIMER_EO!
dx,VRTIF_18259
dx,al

al,0fdH

get number of processor to wa-=

get processor ID of next to watch

check watch_dog
FAILURE

; get pending list

if message on list, must check

get current TIME

update
see if our TIME is UP

return, still time before error

clear timer channel interrupt

shut off everything but keyboard

Distributed Issues Final Report

inc dx ; point to mask reg
out dx,at

xor ax,ax

push ax

calt VRTIF_Timestamp

jmp Shut_Down ; Acknowledgment timed out!

; Data AREA

e
L N N N N N N N NN NN NN N]

'

align 4
ISR dw ? ; interrupt status register
PACKET_SIZE dw ? ; packet size
CARD_RAM dd 0dc000000h ; address of ram buffer on enet card
RECEIVE_PTR dw ? ; points to current next page to rcv
XPARM_COUNT dw ? ; number of xmit params left to copy
PROFILE_PTR dw ? ; current ptr to parameter profile
SEQUENCE dw ? ; this processor’s packet seguencer
NULL_LIST dw 0 ; zero parameters

The following semaphore is used to provide mutual exclusion to the
; transmit side of the Ethernet card.

TX_READY dw ? ; semaphore count
dw ? ; task value
dw ? ; task value
RECEIVE_FLAG dw ? ; contains buffer desc in SYNC_PHASE
R R
; BUFFER QUEUE STRUCTURE ;
H record ;
: BUFFER_OFFSET ;
H NEXT_PTR H
H end record; H
Fiiiiiiiiiiiiiiiaiiiaiiiiiiiiii
RX_BUFF_HEAD dw (?)
RX_BUFFER db num_buff dup (buff_size dup (?))
RX_BUFF_Q dw num_buff dup (2 dup(?)) ; (BUFFER_PTR, NEXT_DESC_PTR)

; The outstanding packet acknowledgement queue contains the

; Task id and the sequence number used when transmitting

; each (non-acknowledgement) message. When an acknowlegement message
; is received, this list is checked and if the ids are found,

-256-

; they are removed.

Distributed lIssues Final Report

1f they are not found, the acknowledgement is

; trashed (this should not occur unless the master CPU restarts while
; a slave is still transmitting an acknowledge. However, in future

; versions with retry implemented, multiple acknowledgements may be

; possible.

Queue structure:

e we =,

P

ack_delay equ
ACK_TIMER dw
ACK_FREE dw
ACK_PENDING dw

ACK_HOLDING dw

ack_size equ
; list structure

ack_next equ
ack_pid equ
ack_seq equ
ack_count equ

ACK_RECORDS dw

cseg ends
end

AAR TR R AR ARk bk kkdk®

* NEXT QUEUE PTR *
RRRAERRRRRRRRAN RN’ ARER
* TASK ID *
I T T
* SEQUENCE NUMBER *
ARRRERERARE TR RN REN RN
* TIMER COUNTER *

HNARERNEERRARAN AN AN RN AN

20 ; interrupts = 5 ms each

?

? ; list of unused acks

? ; list of acks we are waiting for

? ; list of acks waiting to go out

8 ; bytes per entry

0 ; point to next in ack list

2 ; processor ID of packet to be acked
4 ; sequence number

6 ; counter (used to time-out ack)

num_buff dup (ack_size dup(?)) ; NEXT, SEQ#, COUNT

-257-

page 55,132

Distributed Issues Final Report

TITLE VRTIF - Vendor Runtime Interface Module

stemencsssane I R R N N R R R R R R R T T
R R R R R R R R R R R R R R R R R Y

FILE: DA_VRTIF

P R

; Copyright(C) 1989, LabTek Corporation :

............. e
IR RN NN NN NN]

public
public
public

public
public
public
public
public
public
public
publ ic
public
public
public
public
public
public

extrn
extrn
extrn
extrn
extrn
extrn

extrn

VRTIF_18259 equ
VRTIF_TCBTID equ
VRTIF_SELECT REC equ

far_jmp_instruction
retf2_instruction
retf_instruction
short_call_instruction

Distributed Ada - Vendor Runtime Interface
This module provides the addresses within the H
; Vendor supplied runtime for required tasking primatives.

P aT T i a i iaaa0saeataiiiiiitiiitiriiiiiiiiitisiiiiiiiis

include DA_DEF.ASM

VRTIF_18259, VRTIF_vector_base

VRTIF Wa
VRTIF Lo

VRTIF_Cr
VRTIF_Ac
VRTIF_En
VRTIF_Re
VRTIF_Ac
VRTIF_Se
VRTIF_Pu
VRTIF_Ti
VRTIF_TC
VRTIF_AP
VRTIF_In
VRTIF_ta
VRTIF_DS
VRTIF_SE

Create_T
Activate
Request
Rendezvol
Select:n
Accept:n

PID:word

20H
22
6

equ
equ
equ
equ

it, VRTIF_Signal, VRTIF_Signal_I
wer_Priority

eate_Task
tivate_Complete
try
ndezvous_Complete
cept

lect

tCh

mes tamp

BTID

PLICATION

it

sk_ptr

LECT_REC

ask:near
_Complete:near

_Entry:near

us_conplete:near
ear
ear

; address of interrupt controller chip

; offset in TCB to priority (identifies task)
; bytes per stack record for each open

; alternative in a select statement

O000EAH ; jmp intersegment

OCAOZH ; return intersegment pop two bytes
000C8H ; return far

OCOEBH ; short call

R

Distributed Issues Final Report

; NOTE: During start up (COLD START) the vector base is that of DOS. After
; runtime intitialization has completed it is moved to 200H. HKowever, this
; occurs after the network initialization, and the vectors in plac > at 20K
; are moved to 200H. Subsequent restarts are “WARM" and do not effect any
; of the interrupt vector tables.

’

VRTIF_vector_base equ 20K : Initial base of vector table (DOS)
VRTIF segment at DEF_VRTIF_ADDR

org 0 ; this is just for convience
VRTIF_DS label word ; actually in different segment

org 970H ; offset in RT DS
VRTIF_TASK_PTR label word ; offset in DS for current task

RUNTIME TASKING CALLS ADDRESSES TO ALLOW VECTORING TO THE DISTRIBUTED
Ada RUNTIME

L T

org 11DAH
R1Accept label far ; simple accept
org 12CTH
RIENtry label far ; simplecallentry uncond
org 13F3H
R1RendezvousComplete label far ; rendezvouscomplete
org 1476H
R1Activated label far ; activated
org 161CH

R1CreateTask label far ; createtask

org 1D28H
RiSelect Label far ; select
org 2608H

VRTIF_SETPRIORITYLOWER label far

org 3988H
VRTIF_PutCh label far ; put_character

org 3CCEM ; timestamp
VRTIF_Timestamp label far

org 4OFOH ; patch for short calls to set priority
PATCH_4OFO label far

org 5198H

-259-

VRTIF_Signal _I

VRTIF_Wait

VRTIF_Signal

VRTIF

“s we we

vrtif2

label

org
Label

org
tabel

ends

segment at 5374H

org

far

51D0H
far

51E6H
far

APPLICATION ENTRY ADDRESS

6

VRTIF_APPLICATION label far

vrtife

cseg segment common

ends

]

'

N

Distributed Issues Final Report

R1TESI?V] V semaphore operation (interrupt)

; R1TESS?P P semaphore operation (non interrupt)

; R1TESS?V V semaphore operation (non-interrupt)

assume cs:cseg,ds:cseg,es:cseg

org

1100H

; p.ch in calls to distributed runtime to allow runtime checking
; of distribution.

VRTI(Init:
mov
mov

; Crcate Task
lea
mov
inc
lea
mov
add

ax,DEF_VRTIF_ADOR

es,ax

di,R1createtask

; segment for Vendor Runtime

byte ptr es:(di],far_jmp_instruction

di

ax,Create_Task

es: [di],ax

di,2
ax,cs

es: [di],ax

; Activate Complete

lea
mov
inc
lea
mov
add

di,R1Activated

byte ptr es:[di],far_jmp_instruction

di

ax,Activate_Complete
es: (di],ax

di,2
ax,cs

es: (di],ax

-260-

; entry calls

’

'

’

lea
mov
inc
lea
mov
add

end rendezvous

lea
mov
inc
lea
mov
add

Select
lea

inc
lea

; Accept

lea

inc
lea

Distributed Issues Final Report

di,Rlentry

byte ptr es:[di),far_jmp_instruction
di

ax,Request_Entry

es: [di],ax

di,2

ax,cs

es: [di]),ax

di,R1rendezvouscomplete

byte ptr es:{di],far_jmp_instruction
di

ax,Rendezvous_Complete

es: [dil,ax

di, 2

ax,cs

es: [di),ax

di,R1Select

byte ptr es:[dil,far_jmp_instruction
di

ax,Select

es: [di},ax

di,2

ax,cs

es:[dil,ax

di,R1Accept

byte ptr es:[di], far_jmp_instruction
di

ax,Accept

es: [di),ax

di,2

ax,cs

es: (di),ax

SETUP special short call transfer area at end of patch for setting
the priority

di,PATCH_40FO
byte ptr es:(di),short_call_instruction

word ptr es:[di+1],offset VRTIF_SETPRIORITYLOWER-(PATCH_40F0+3)

byte ptr es:[di+3),retf_instruction

If this is not the master, do not use PutChar... must patch

-261-

; it out.

test

assume

VRTIF_Accept:

Distributed Issues Final Report

CS: [PID),0FFFFh ; master is always zero
Init_10

di,VRTIF_PutCh

word ptr es:[di]l,retf2_instruction

byte ptr es:[di+2],0 ; high half of count

ax,cs ; restore data segment
ds,ax

ds:VRTIF

ds, [VRTIF_DS]
si, [VRTIF_TASK_PTR]
R1Accept+8

ds, [VRTIF_DS)
si, [VRTIF_TASK_PTR]
RIENtry+8

VRTIF_Rendezvous_Complete:

mov
mov
imp

ds, [VRTIF_DS]
si, [VRTIF_TASK_PTR]
R1rendezvouscomplete+8

VRTIF_Activate_Complete:

mov
mov
imp

ds, [VRTIF_DS)
si, [VRTIF_TASK_PTR]
Rlactivated+8

VRTIF_Create_Task:

push

VRTIF_ Select:
push

bp

bp,sp

ds, (VRTIF_DS)
Rilcreatetask+7

bp

ko, sp

ds, [VRTIF_DS]
Riselect+7

VRTIF_Lower_Priority:

call
ret

Patch_4OF0

-262-

Distributed Issues Final Report

cseg ends

end

-263-

Distributed Issues Final Report

; DA - Distributed Task Control Block Module H
h h
; Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA H
R R R
H ‘
; Ver Date Description ;
H i
; 0.2 Dec-89 : Enhanced to support error detection and dynamic H
; configuration ;
H H

include DA_DEF.ASM
.model large

public DTCB_INIT

public SYNCHRO_SEMAPHORE
public CONTINUE_SEMAPHORE
public TASK_DIRECTORY

public proc_table_size
public REMOTE_CPU_TABLE
public NAME_TABLE

public WATCH_LIST
public WATCH_DOG

extrn MODE_SELECT:word
extrn PID:word

cseg segment common

assume c¢s:cseg,ds:cseg,es:cseg

org 0AQOH
ST i i a N i e i i i riaaiiiiiiaaisititasioeiviiiitesiiansivsisaersieiaiariaaisiiig
; Task Control Blocks
H Semaphore 3 words
H Reply Pointer 1 word
; Return Address 2 words
; Num Entries 1 word
H Entry Table N * 3 words (where N is the number of entries)
H Profile Ptr 1 word
H Wait Flag 1 word
H Entry Queue 2 words
H

-264-

Distributed Issues Final Report

H Profile List:

; Number of Parameters 1 word

; Mode 1 word ("in%, “out®, “in out")

H Type/Length 1 word (negative means unconstrained)
T i e it Tl i il isatiiiisaissrsiioiiisisiciiitisaaisiasiiiisieiiieiviin
H

; The TCB contains a synchronize semaphore which is used to

suspend itself and wait for a signal from another task.
This is followed by a reply pointer used to hold the buffer
descriptor of the message to which a reply is due. Then

the entry information is provided. This begins with the number
of entries for this task, followed by a record for each entry.
Each entry record contains:

- A profile pointer which provides the offset within the CS for

~s we we we

~e we we

; information on the parameter profile for this entry.
H - A waiting flag used by the accep-ing task to indicate that it
; has suspended waiting for a call on this entry (and possibly
; others).
; - A buffer List Pointer, This points to the buffer descriptor
; for the first caller to this entry. The buffer descriptor
; provides the actual buffer address and a link to the next
; descriptor. This provides the FIFO queue for each entry.
H
semaphore struc
dw 3 dup (?)
semaphore ends

I Rt I N T N e T N I T T
;
; TCB_INIT - Initialize Distributed Task Control Blocks
‘

OTCB_Init:

xor ax,ax

mov [SYNCHRO_SEMAPHORE] , ax
mov [SYNCHRO_SEMAPHORE+2] , ax
mov {SYNCHRO_SEMAPHORE+4] , ax
mov [CONTINUE_SEMAPHORE] , ax
mov [CONTINUE_SEMAPHORE+2] , ax
mov [CONT INUE_SEMAPHORE+4] , ax

H Initialize Distributed Task Directory Based on Current Operating Mode
; This calls the Init_TCB for each task to initialize its structures.

INIT_DIRECTORY:

mov si, [MODE_SELECT] ; fetch mode
dec si ; model => offset O
add si,si ; make word index

mov 3i,MODE_TABLE [si] ; fetch address of mode values

-265-

xor
cld

INIT_DIR_LOOP:

movswW
mOVSW
mov
call
add
Stosw
Loop

cx,total_tasks

di,TASK_DIRECTORY
ax,ds
es,ax
ax,ax

bx, [di)
Init_TC8
di,2

INIT_DIR_LOOP

Distributed Issues Final Report

transfer local/distrib flag
transfer PID
get TCB pointer

- we o~

; skip the distrib TCB pointer
; zero counter for tasks of this type

H Initialize Watch Dog Timer Information based on configuration and
H this processor’s ID

jexz
add
Watch_Init:
mov
add
mov
add
Loop

ax, [PID]
bx,DEF_max_cpus*2
bx

bx, ax

ax, [MODE_SELECT]
ax

; bytes per cpu entry

; BX = cpu offset

; adjust by one to make zero origin

dx, (DEF_max_cpus*DEF_max_cpus) * 2 ; bytes per mode table

dx

si,ax
si,WATCH_TABLE fsi
[WATCH_LISTI,si
cx, [si)
Watch_init_done
si,2

bx, [si]
bx, bx

+bx] ; get address of watch list entry
; set value for other'’s use

; fetch number of timers to init

; fetch PID of processor to watch

WATCH_DOG [bx] ,DEF_WATCH_DOG_LIMIT ; init timer for this pid

si,2
Watch_init

Watch_init_done:

ret

i i s i a N Tl e aai s i iaiiiiiisatsiaiissiiiiiviainiireciariisiirieitiaiit

zero all semaphore words and entry table values tor the TCB

; Init_TCB

; pointed to by:

.
’

Init_TCB:
or

INPUT:

bx, bx

BX points to TCB of interest
AX contains 2ero

; does this task have a TCB?

-266-

Distributed Issues Final Report

jz Init_TCB_30 ; exit if not applicable

mov [bx],ax ; clear semaphore

meY (bx+2},ax

mov [bx+4] ,ax

push cx

mov cx, [bx+DEF_num_entries] ; fetch number of entries
lea bx,DEF_entry_table[bx]

jexz Init_TCB_20 ; if no entries

Init_TCB_10:

mov DEF_entry_wait([bx],ax ; zero wait flag

mov DEF_entry_queue [bx], ax ; zero buffer descriptor
mov DEF_entry_queue+2 [bx] , ax ; zero next pointer

add bx,size DEF_entry_rec ; 9o to next record

Loop Init_TCB_10

Init_TCB_20:

pop cX
Init_TCB_30:
ret
align &
R R R R R A R R R R R R R R R R A)
Configuration Mode Control

L S TR

’

THESE TABLES WOULD NORMALLY BE PRODUCED BY A CONFIGURATION CONTROL
TOOL, BUT FOR PROTOTYPE PURPOSES THEY ARE GENERATED BY HAND.

The current configuration control allows for four different
operating modes and three processors (alpha, bravo, and charlie):

MODE 1 : All tasks are on the alpha processor
MODE 2 : AlL BDS tasks are on alpha, all simulator tasks are on bravo.
MODE 3 : All BDS tasks are on alpha, all simulator tasks are on charlie.
MODE 4 : All BDS tasks except one of the guidance tasks is on alpha,

the simulator is on bravo, and one guidance task is on charlie

The mode (below) is initialized during system startup. The master
processor asks the operator which mode to use. If a system failure
occurs, the master shuts down the system and brings it back up as

a single processor version. Note that a system function:

Configuration Table - for each task, the location is defined in terms
of current operating mode.

MOOE_TABLE label word
dw offset MODE1
dw offset MCOE2
dw of ‘set MODE3
dw offset MOOE&4

-267-

Distributed Issues Final Report

; TASK LOCATION DIRECTORY because of lack of compiler

; support, very little information is avaiiable to uniquely correlate

; tasks during runtime calls. As a workaround, unique priorities

; are used for each task type, and counters are supplied for multiple

; tasks within the type which modify the identification with respect

; to the task priority. In this way, each task can be guickly correlated
; to its distributed characteristics at runtime.

; The following directory contains entries for each task and is indexed
; by task priority. The entries are:

’
; <LOCAL/DISTRIBUTED FLAG> <PID> <DIST_TCB_PTR> and <spare>

; The LOCAL/DISTRIBUTED FLAG indicates if all entry calls are local. !f
; one is distributed, they must all go through the distributed runtime,
; even if the call being made is local. <PID> is the processor that the
; task 1s resident on. For calls being made through the distributed

; runtime, additional task control information 1s located by the pointer
; DIST_TCB_PTR.

; This directory ic initialized during configuration time based on

; operator or automatic mode selection. The first two values are

; set according to mode, the last two are statically defined.

H
;ii"i"t'ititﬁi-iﬁi*tﬁii.ﬁﬁt'*iﬁ*ﬁittit"t**ti*ii'f'***'ttt'tttttttiititiﬁﬁ*t*t

TASK_DIRECTCRY Llabel word

dw 4 dup (0) ; dummy to offset 32
dw 2,7, SAVE_TCB, ? ;1 (12)save 3
dw ?,?, DISPLAY_TCB, ? ;(1)display 30
dw ?,?, TRACK_DAT_TCB, ? ;(10)track_data 29
dw 7,7, REPORTBUF_TCB, ? ; (09)report_buf 28
dw 7,7, GUIDEBUF_TCB, 2 ; (08)guide_buf 27
dw ?,?, ROCKSup_tcs, 2 :(07)rock_sup 26
dw ?,?, TARGSUP_TCB, ? ;(06)targ_sup 25
dw ?,?, CONTROL_TCB, ? ;¢05)control 24
dw ?,?, GUIDANCE1_TCB, ? ; (04)guidance(1) 23
("] 7,7, GUIDANCEZ2_TCB, ? ;(03)guidance(2) 22
dw 2.7, TRACK _TCB, ? ;(02)track 21
dw 2,2, UPDATC TCB, 7 ; (01)update 20
dw ?,?, MAIN_TCSB, ? ; (00)bds 19
total_tasks equ ($-TASK_DIRECTORY)/8 ; must follow definitions above

A2 S22 ad il ad il d sl il il P T TITYT T RE 22 22 22 2222
’

local_ent.ies equ 0
dist_entries equ 1

M For each mode (of four) the local/distrib flag must be set and the pid
H must be set.

-208-

MODE 1

MODEZ2

MODE3

tabel

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

Label

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

Label

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

word
DISTRIBUTED
2 dup (0)
local_entries,
local_entries,
local_entries,
local_entries,
local_entries,
local_entries,
local_entries,
locat_entries,
local _entries,
o,
local_entries,
local_entries,
local_entries,

word
DISTRIBUTED
2 dup (0)
local_entries,
local _entries,
local_entries,
dist_entries,
dist_entries,
!ncal_entries,
dist_entries,
local_entries,
local_ent-ies,
g,
local_entries,
local_entries,
local _entries,

word
DISTRIBUTED
2 dup (0)
local_entries,
local_entries,
local_entries,
dist_entries,
dist_entries,
local _entries,
dist_entries,
local _entries,
local _entries,

’

Distributed Issues Final Report

PID
; dummy to offsetr priority by one
DEF_alpha ;(12)save
DEF_alpha ;(11)display
DEF_alpha ;(10)track_data
OEF_alpha ; (09 report_buf
DEF_alpha ; (08)guide_buf
DEF_alpha ; (07)rock_sup
DEF_alpha ; (06)targ_sup
DEF_alpha ; (05)control
DEFf_alpha ;(04)guidance(1)
DEF_NA ;€03)guidance(?)
DEF_alpha ;(02) track
DEF_alpha ;(01)update
DEF_alpha ;(00)bds
PID
; dummy to offset priority by one
DEF_alpha ;(12)save
DEF_alpha :(11)displav
DEF_alpha ;(10)track_data
DEF_bravo :(09)report_buf
DEF_brevo ; (08)quide_buf
DEF_bravo ;(07)rock_sup
OEF_bravo ;(06)targ_sup
DEf_alpha ;(0S)control
DEF_alpha ;(04)guidance(1)
DEF_NA ; (03)guidance(2)
DEF_alpha ;(02)track
DEF_alpha ;(01)update
LEF_alpha ; (00)bds
PID
; dummy to offset priority by one
DEF_alpha ;(12)save
DEF_alpha ;(11)display
DEF_alpha ;(10)track_data
DEF_charlie ; (09)report_buf
DEF _charlie ;(08)guide_buf
DEF_charlie ;(07)rock_sup
DEF _charlie ;(06)targ_sup
DEF_alpha ;(05)control
DEF_alpha 1 (04)guidance(1)

-269-

dw
dw
dw
dw

MODE4 label

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

0,
local _entries,
local_entries,
local_entries,

word
DISTRIBUTED
2 dup (0)
local_entries,
local_entries,
local_entries,
dist_entries,
dist_entries,
local_entries,
dist_entries,
local_entries,
dist_entries,
local_entries,
local_entries,
local_entries,
local_entries,

Distributed Issues Final Report

DEF_NA ;(03)guidance(2)
DEF_alpha ;(02)track
DEF_alpha ;(01)update
DEF_alpha ; (00)bds

PID

; dummy to offset priority by one

DEF_alpha i (12)save
DEF_alpha ;(1)display
DEF_alpha ;(10)track_data
DEF_bravo ; (09)report_buf
DEF_bravo ; (08)guide_buf
DEF_bravo ;(07)rock_sup
DEF_bravo ;(06)targ_sup
DEF_alpha ;(05)controt
DEF_charlie ;(04)guidance(1)
DEF_alpha ;(03)guidance(2)
DEF_alpha ;(02)track
DEF_alpha ;¢(01)update
DEF_alpha ;(00)bds

...

P T T S0 I E S SR AT PP P T RSP IR AT EEE IO RSP 200000 080T PO T PRt eTanadtiter

; Task Control Blocks

Main_TCB semaphore <>
dw ? ; Reply Pointer
dw 2 dup (?) ; Return Address
dw 0 ; Number of Entries
Targsup_TCB SEMAPHORE <>
dw ? ; reply
dw 2 dup (?) ; Return Address
du 1 ; num of distributed entries
DEF_entry_rec <offset Next_Target_Msg,?,?,7>
Next_Target_Msg dw 1 ; ! parameter = TARGET_MSG_TYPE
dw DEF_OUT ; mode = out
dw 802 ; only allow 50 targets for now!
Rocksup_TCB SEMAPHORE <>
dw ? ; reply
dw 2 dup (?) ; Return Address
dw 0 ; num of distributed entries

Distributed Issues Final Report

Guidebuf_TCB SEMAPHORE <>
dw ? ; reply
dw 2 dup (?) ; Return Address
dw 2 ; num of distributed entries

DEf_entry_rec <offset Put_Guide,?,?,?>
DEF_entry_rec <offset Get_Guide,?,?,?>

Put_Guide dw 1 ; 1 parameter
dw DEF_IN ; in mode
dw 122 ; # bytes
Get_Guide dw 1 : 1 parameter
dw DEF_OUT ; out mode
dw 122 ; # bytes
Reportbuf_TCB SEMAPHORE <>
dw ? ; reply
dw 2 dup (?) ; Return Address
dw 2 ; num of distributed entries
DEF_entry_rec <offset Put_Report,?,?,7>

DEF_entry_rec <offset Get_Report,?,?,?>

Put_Report dw 1 ; 1 parameter
dw DEF_IN ; in mode
dw 322 ; # bytes
Get_Report dw 1 ; 1 parameter
dw DEF_OUT ; out mode
dw 322 ; # bytes
Track_TCB SEMAPHORE <>
dw ? ; reply
dw 2 dup (?) ; Return Address
dw 0 ; num of distributed entries

Control_TCB SEMAPHORE <>

dw ? ; reply

dw 2 dup (?) ; Return Address

dw o} ; num of distributed entries
Guidancel_TCB SEMAPHORE <>

dw ? ; reply

dw 2 dup (?) ; Return Address

dw 2 ; num of distributed entries

DEF_entry_rec <offset History,?,?,?>
DEF_entry_rec <offset Next_Guidance,b?,?,?>
History dw 1 ; 1 parameter

-271-

Distributed Issues Final Report

dw DEF_IN ; mode is in
dw -1 ; unconstrained
Next_Guidance dw 1 ; 1 parameter
dw DEF_OUT ; mode is out
dw -1 ; unconstrained
Guidance2_TCB SEMAPHORE <>
dw ? ; reply
dw 2 dup (?) ; Return Address
dw 2 ; num of distributed entries

DEF_entry_rec <offset History,?,?,?>
DEF_entry_rec <offset Next_Guidance,?,?,?>

SAVE TCB SEMAPRORE <>

dw ? ; reply

dw 2 dup (?) ; Return Address

dw 0 ; num of distributed entries
DISPLAY_TCB SEMAPHORE <>

dw ? ; reply

dw 2 dup (?) ; Return Address

dw 0 ; num of distributed entries
TRACK_DAT_TCB SEMAPHORE <>

dw ? ; reply

dw 2 dup (?) ; Return Address

dw 0 ; nun of distributed entries
UPDATE_TC8 SEMAPHORE <>

dw ? ; reply

dw 2 dup (?) ; Return Address

dw 0 ; num of distributed entries

; These semaphores are used for synchronization of tasks among allt
; processors during program startup.

;

SYNCHRO_SEMAPHORE dw 3 dup (?)

CONTINUE_SEMAPHORE dw 3 dup (?)

P I I I I R I IR R R R R L I I
PR R R R R N R R R

H PROCESSOR TABLE: Given the Mode, the number and pids are provided ;
K fields: # of remote CPU’'s, CPU1-1D, CPU2-1D ;
Illlllllllll'llllll :;I.

proc_table_size equ 6 ; bytes per entry
REMOTE_CPU_TABLE label word

-272-

Distributed Issues Final Report

dw 0, DEF_NA, DEF_NA
dw 1, DEF_bravo, DEF_NA
dw 1, DEF_charlie, DEF_NA
dw 2, DEF_bravo, DEF_charlie
NAME_TABLE label word
dw offset ALPHA_NAME
dw offset BRAVO_NAME
dw offset CHARLIE_NAME
ALPHA_NAME db ‘Alpha’,0
BRAVO_NAME db ‘8ravo’,0
CHARLIE_NAME db ‘Charlie’,0

; Watch Dog Timer Data : These Structures determine which processors ;
; to monitor for activity as a function of processor ID and mode.

cenmasenecans
Piriiiiiiiisiies lllllllllllIlllllllllllllllllllllll'llllIlllllllllllll

align 2

The following table contains a block “ar each mode, which contains

an entry for each processor. Each entry sontains a count, followed

by the PIDs to watch. This table defines which processors communicate
with each other during the various modes.

~e we ws we w,

Watch_table_entry_size equ 8
WATCH_TABLE label word
7MODE1 -- no processors to watch
dw O,DEF_NA, DEF_NA ; PID O
dw 0,0EF_NA, DEF_NA ; PID 1
dw 0,0EF_NA, DEF_NA ; PID 2
;MODE2
dw 1,DEF_bravo,DEF_NA ; PID O
dw 1,DEF_alpha,DEF_NA ; PID 1
dw 0,DEF_NA, DEF_NA ; PID 2
;MODE3
dw 1,0EF_charlie, DEF_NA ; PID O
dw 0,DEF_NA, DEF_NA ; PID 1
dw 1,DEF_alpha, DEF_NA ; PID 2
;MODE4
dw 2,0EF_bravo, DEF_charlie ; PID O
dw 1,DEF_alpha, DEF_NA ; PID 1
dw 1,0EF_alpha, DEF_NA ;P10 2
WATCH_LIST dw ? ; points to list for current config
WATCH_DOG dw DEF_max_cpus dup (?) ; table of timers
cseg ends
end

273-

Distributed Issues Final Report

THIS PAGE INTENTIONALLY LEFT BLANK.

-274-

cans
INEEE]

L P

-

’

.model tlarge
public Setup
public PID ; processor 1D
public NET_TABLE ; addresses indexed 8 per PID
include DA_HW.ASM
cseg segment common
assume cs:cseg,ds:cseg,es:cseg
org 1COOH
Setup:
mov dx,cntrl ; Gate array controller
mov al,eth_enable_reset
out dx,al
mov al,eth_disable_reset
out dx,al
mov al,eth_access_prom
out dx,al
mov ¢x,6
mov ax,cs
mov es,ax ; set es:di to receive board
mov di,offset BOARD_ADDRESS :; address from prom
mov dx,prom_address_0
cld
GET_ADDRESS:
in al,dx
stosb
inc dx
loop GET_ADDRESS
mov dx,cntrl ; select no-sharing adapter,
mov al,eth_recv_select ; and external transceiver
out dx,al
mov dx,gacfr ; 8K of memory mapped space,
mov al,eth_{an_config ; with interrupts enabled
out dx,al
mov dx,dqtr ; # of bytes to transfer on
mov al,eth_rem_DMA_burst ; a remote DMA burst (n/a)

page
TITLE

FILE: DA_SETUP.ASM
Distributed Ada - Setup

This module initilizes the network to prepare for distributed

processing.

COpyright(C) 1989, Labr

Distributed Issues Final Report

55,132

Setup - Distributed Ada Network lnitialization

llllllllllllllllllllllllllllllI"'ll’lllllllllllllllllIlllll'lll'lll

ek Corporation Woodbridge, CT. USA

“ea

.e
IR NN N N NN RN N NN NNE]

]

s we we wa

-275-

Distributed Issues Final Report

dx,al

dx,idcfr
al,eth_irq_line
dx,al

dx,damsb
al ,eth_rem DMA_config
dx,al

dx,pstr
al,eth_recv_buf_start
dx,al

dx, pspr
at,eth_recv_buf_end
dx,al

dx,NIC_cr
al,eth_nic_stop
dx,al

dx,NIC_dcr
al,eth_nic_DMA_config
dx,al

dx,NIC_rbcr0
al ,eth_remote DMA_lo
dx,al

dx,NIC_rbcr
al ,eth_remote_DMA_hi
dx,al

dx,NIC_rcr
al,eth_packet_types
dx,al

dx,NIC_tcr
al,eth_nic_mode
dx,al

dx,NIC_bndy
al,eth_bndy_start
dx,al

dx,NIC_pstart
al,eth_recv_buf_start

dx,al

dv,NIC_pstop

- ws =

- ms ws

“s wn e

s s =

-

interrupt IRQ and DMA
channel selection (DMA n/a)

8k configuration for remote
DMA. Not used, but minimum
value needed

start of receive buffer.
Value MUST match that in
NIC_pstart

end of receive buffer.
Vaiue MUST match that in

NIC_pstop

stop NIC activity

local DMA transfers as
8 byte bursts

remote DMA setup (remote
DMA not used, only local
used)

hi byte of # of bytes to
transfer during a remote

DMA operation

accept only good packets

go into internal loopback
mode to finish programming
(see anomalies - p. 52)

overwrite protection rgtr.

(protects unread packets)

start of receive queue

end of receive queue

-276-

GIVE_ADDRESS:

’

lodsb
out
inc
loop

Distributed Issues Final Report

al,eth_recv_buf_end
dx,al

dx,NIC_isr
al,eth_int_status
dx,al

dx,NIC_imr
al,eth_ints_disabled
dx,al

dx,NIC_cr
al,eth_access_page_1
dx,al

dx,phys_address_0
ax,cs
ds,ax

si,offset BOARD_ADDRESS

cx,6

dx,al
dx
GIVE_ADDRESS

dx,NIC_curr
al,eth_recv_buf_start
dx,al

dx,NIC_cr
al,eth_access_page_0
dx,al

dx,NIC_cr
al,eth_start_nic
dx,al

dx,NIC_ter
al,eth_exit_mode
dx,al

‘

e my me

¢

.

; clear interrupt status

disable interrupts
for receive and xmit

access page 1 registers

let NIC know its address

; from the prom

number of addresses to give

; load all addresses

load current receive pointer
with pstart

; access page 0 registers

start NIC chip

exit internal loopback mode

Note: The RAM initialization is necessary for the multi-packet processing
done in the receive interrupt routine

ax,net_mumory_seg
es,ax
cx,net_memory_size/2
di,di

+

v

initialize LAN memory to
zeroes

in words

start at begin of segment

-277-

FILL:

our processor ID

.~ wa wa we

Search:

[
; If not found, it
H

Found:

Now check our address

Distributed Issues Final Report

mov ax,0000

stosw
loop FILL

mov ax,cs
mov es,ax
mov bx,0
mov di,offset NET_TABLE

.. =

push di H
mov cx,3 ;
mov si,offset BOARD_ADDRESS
repe cmpsw

pop di H
jz Found

add di,8&

inc bx

cmp bx,NET_COUNT
jnz Search

e we ws ws

; initialization value

against the known Ethernet addresses to determine

ds already = ¢s
init processor ID

search direction = increment
save start of current net addr
three words per address
restore current table index

90 to next index

count processor id

see if all searched
loop back if more

will return processor id = NET_COUNT

mov (PID],BX H
ret ;
align 2

record Processor D
done with Setup

; VALID PROCESSOR ID’s Determined by Ethernet ADDRESS

BOARD_ADDRESS

; 0 - ALPHA

: 1 - BRAVO

: 2 - CHARLIE

PID dw ?

db 6 dup (?)

H PROCESSOR STATION ADDRESS TABLE

.

NET_COUNT equ

NET_TABLE Label byte
db 02H, 60H, B8CH, 47H, 61H, 82H,0,0 ;
db 02K, 60H, BCH, 47H, 63H, 554,0,0 ;

; Processor 1D

; holds board address

; number of processor on net

processor Alpha 0 EARTH
processor Bravo 1 VENUS

-278-

Distributed Issues Final Report

db 02H, 60H, BCH, 48H, S1H, 60H,0,0 ; processor Charlie 2
db 02H, 60H, 8CH, 58H, 35H, 684,0,0 ; processor Delta 3
db 02H, 60H, 8CH, O2H, OOH, 58K,0,0 ; processor Echo 4
db 02H, 60H, BCH, 44H, 52H, 094,0,0 ; processor Foxtrot 5
cseg ends
END

-279-

Distributed Issues Final Report

page 55,132
TITLE Sync - Distributed Ada Network Synchronization

lllllllllll'lllll;;
; FILE: DA_SYNC.ASM
; Distributed Ada - Setup

. seesesassssssnasve . eeaseacesact et esssresanuawae

:
; This procedure varies depending on the processor type (master/slave) ;
; and the operational phase (Sync_Phase vs. normai). During H
; SYNC_PHASE, the vendor runtime is not used at all (ie. no tasking)
; and a wait loop is uved to detect incoming packets. Since it is

; likely that messages will be lost during SYNC_PHASE, a different

; protocol is used which does not specifically utilize ACK messages.
; Instead, resend and tong time-outs are used to synchronize. A

; "Cold_Start" command is used here to definitively restart the system.;

«-r wa ws ws we

; During normal operation, the master sends a 'sync_start" and waits H
; for a "sync_ready" from each slave. Then it sends a "sync_continue" ;

’

; to continue with processing (all processors have syncrhonized).

H Copyright(C) 1989, LabTek Corporation, Woodbridge, CT. USA H

20
IIIIIIlll'llllllllllll'llllllllllllllll'

include DA_DEF.ASM

public Sync

H MODULE
extrn MASTER:word ; (da)
extrn SYNC_PHASE:word ; (da)
extrn NUM_ROCKETS:word ; (da)
extrn NUM_TARGETS:word ; (da)

extrn MODE_SELECT:word ; (da)
extrn Print:near : (da)
extrn Shut_down:near ; (da)

extrn SYNCHRO_SEMAPHORE:word ; (dtcb)
extrn CONTINUF_SEMAPHORE:word ;(dtcb)

extrn RECEIVE_FLAG:word ;(i0)
extrn TX_READY:word ;(io)
extrn 10 _Deallocate:near ;(10)
extrn 10_Xmit:near HeI)]
extrn VRTIF_WAIT:far slvrtif)

extrn proc_table_size:abs
extrn REMOTE_CPU_TABLE:word
extrn NAME_TABLE:word

cseg segment common
assume cs:cseg,ds:cseg,es:cseg

-280-

Sync:

Sync10

org

push
push
push
push
push
push
push
push
test
jnz

imp

test
jnz

jmp

Distributed Issues Final Report

21004

ax
bx

cx

dx

si

di

ds

es

[MASTER] ,OFFFFH ; are we a master?

Sync10 ; jmp if master

slave ; no, go act like a slave

(SYNC_PHASE) ,OFFFFH ; are we in sync phase
Master_Sync
Master_Normal

synchronize with slave processors and send them configuration

information.

Master_Sync
mov [MASTER_SYNC_DATA_PTR],cs ; first setu Parameter Data Pointer
mov ax, [NUM_ROCKETS] ; load Configus .io.. Record
mov [CONFIG.ROCKETS] , ex
mov X, [NUM_TARGETS)
mov [CONFIG.TARGETS],ax
mov ax, (MODE_SELECT)
mov [CONFIG.SELECT] ,ax
dec ax ; adjust model => 0
mov [RETRY_COUNT] ,DEF_retry_times ; initialize retry counter
mov dx,proc_table_size ; number of bytes per entry (ax=mode)
mui dx ; compute address
lea si ,REMOTE_CPU_TABLE ;
add si,ax ; index to proper selected mode
mov [REMOTE__INDEX],si ; save index into table
mov cx, [si] ; fetch number of processors
mov [CPU_COUNTY , rx ; remaining CPUS to process
add si,2 : skip of number
mov (CPU_PTR], si ; save pointer to current CPU
or cX,cX
jnz MSP10 ; if there are some remote CPUs
jmp Sync90 ; if none

MSP10:

-281-

Distributed Issues Final Report

lea si,crlf
call Print

jmp Shut_down

; Sync occured, print notification and Go on to next processor in list

MSP30:
mov bx, [RECEIVE_FLAG) ; get buffer pointer
call 10_Deallocate ; return buffer
lea si,Success
calt Print
lea si,crtf
call Print
mov si, [CPU_PTR] ; get CPU pointer
add si,2
mov [CPU_PTR] ,si ; update
dec [CPU_COUNT] ; count down
jz MSP35 ; continue if done with loop
jmp MSP10 ; otherwise loop back

; Now All processors have ""checked in", Send them each a "continue"

G

NSP35:
lea si,Sync_Complete
call Print
mov si, [REMOTE_INDEX] ; get index into table back
mov ex, [si] ; fetch number of processors
mov [CPU_COUNT] , cx ; remaining CPUS to process
add si,2 ; skip of number
mov [CPU_PTR],si ; save as current CPU pointer
MSP40:
sest {TX_READY] ,OFFFFH ; make sure the transmitter is free
jle MSP40 ; wait if not
sub sp,6 ; skip parameter stuff
lea ax,MASTER_CONTINUE_PROFILE ; profile
push ax
sub sp,6 ; skip MY_TID, ENTRY, and TID
mov ax,DEF_sync_continue ; command
push ax
push [si] ; processor 1D of destination
call [0_Xmit ; send message
mov si, [CPU_PTR]) ; get CPU pointer
add si,2
mov [CPU_PTR],si ; update
dec [CPU_COUNT] ; count down
jnz MSP4O

-283-

Distributed Issues Final Report

.
’
.
.

Wait for last transmit complete interrupt

'

MSP50:
test (TX_READY] ,OFFFFH ; make sure the transmitter is free
jle MSP50 ; wait if not
jmp Sync90 ; done
R R R A R R R R R O A A R R R R R R R R
MASTER NORMAL PHASE : runtime synchronization after configuration setup

just synchronize with slave processors

we we ws we we

Master_Normal:
mov ax, [MODE_SELECT]

dec ax ; model => 0
mov dx,proc_table_size ; number of bytes per entry (ax=mode)
mul dx ; compute address
lea si,REMOTE_CPU_TABLE ;
add si,ax ; index to proper selected mode
mov [REMOTE_INDEX],si ; save index into table
mov cx, [si) ; fetch number of processors
mov {CPU_COUNT] ,cx ; remaining CPUS to process
add si,2 ; skip of number
mov [CPU_PTR],si ; save pointer to current CPU
or cx,CcX
jnz MNP10 ; if there are some remote CPUs
jmp Sync90 ; if none
MNP10:
sub sp,6 ; skip parameter stuff
lea ax,MASTER_CONTINUE_PROFILE ; no parameters
push ax
; My TID
sub sp,6 ; skip ENTRY, and TID
mov ax,DEF_sync_start ; command
push ax
mov si, [CPU_PTR] ; get cpu pointer back
push (sil ; processor 1D of destination

call 10_Xmit send message

Now wait for a reply

e we we

pus cs

lea ax,SYNCHRO_SEMAPHORE

push ax

call VRTIF_Wait ; do a wait

Sync occured, Go on to next processor in list

~e w4 we

MNP30:
mov si, (CPU_PTR] ; get CPU pointer

-284-

-

add

dec
jz
imp

; Now All processors have “checked in'.

si,2
[CPU_PTR], si
[CPU_COUNT]
MNP35

MNP10

Distributed Issues Final Report

update

count down

continue if done with loop
otherwise loop back

Send them each a "continue"

MNP35:
mov si, [REMOTE_INDEX) ; get index into table back
mov cx, [sil] ; fetch number of processors
mov [CPU_COUNT] , cx ; remaining CPUS to process
add si,2 ; skip of number
mov [CPU_PTR],si ; save as current CPU pointer
MNP40:
sub sp,6 ; skip parameter stuff
lea ax,MASTER_CONTINUE_PROFILE ; profile
push ax
sub sp,6 ; skip MY_TID, ENTRY, and TID
mov ax,DEF_sync_continue ; command
push ax
push [si] ; processor ID of destination
catl 10_Xmit ; send message
mov si, [CPU_PTR] ; get CPU pointer
add si,2
mov [CPU_PTR], si ; update
dec [CPU_COUNT) ; count down
jnz MNP4O
jmp Sync90 ; DONE
Slave:
test {SYNC_PHASE] ,OFFFFH ; see if initial sync phase
jnz Slave0S
jmp Slave_Normal
Slave05:
lea si,Slave_sync
call Print
R R R R R R R R R R R R R A A
; SLAVE SYNC MODE
H wait for configuration information
Slavel0:
test (RECEIVE_FLAG) ,OFFFFH ; see if incoming data
jz Slavel0

; We got a message, check the command for "start"

mov

bx, (RECEIVE_FLAG)

-285-

Distributed Issues Final Report

mov [RECEIVE_FLAG},0 : zero for next time

mov si, [bx] ; fetch buffer ptr

cmp word ptr [si+DEF_pkt_cmd) ,DEF_cold_start ; is this a START
iz Slave20

; Must be some other traffic, ignore it!

call 10_Deal locate ; free up buffar
imp Slavet0

;
; Got a valid Cold Start... respond!

Slave20:
lea si, [si+Def_pkt_data) ; point to data area of packet buffer
mov ax, [si+ROCKETS) ; unioad Configuration Information
mov {NUM_ROCKETS] , ax
mov ax, [si+TARGETS)
mov [NUM_TARGETS], ax
mov ax, [si+SELECT]
mov [MOOC_SELECT] ,ax
call 10_Deallocate
Slave30:
test [TX_READY] ,OFFFFR ; make sure the transmitter is free
jle Slave30 ; wait if not
sub sp,6 ; skip parameter stuff
lea ax,SLAVE_READY_PROFILE ; profile
push ax
sub sp,6 ; skip MY_TID, ENTRY, and TID
mov ax,DEF_sync_ready ; command
push ax
xor ax,ax ; P10 of master is always zero
push ax
call 10_Xmit ; send message
lea si,Success
call Print

; Now wait for Continue

Slave40:
test [RECEIVE_FLAG] ,OFFFFH ; see if incoming data
jz Slaves40

; MWe got a message, make sure it is continue
mov bx, (RECEIVE_FLAG]
mov [RECEIVE_FLAG],0 ; clear for next time

mov si, [bx] ; get buffer pointer
cmp word ptr [si+DEF_pkt_cmd] ,DEF_sync_continue ; is this a CONTINUE?

-286-

Distributed Issues Final Report

jz Slave50

; Must be some other traffic, deallocate buffer, and check for another cold
; start.

call 10_Deallocate ; free up buffer

cmp word ptr [si+DEF_pkt_cmd] ,DEF_cold_start ; COLD START?
jnz Slave40 ; if not, simply ignore it

jmp Slavel0 ; if so, start all over

; Slave synchronization has completed, deallocate buffer and exit

Slave50:
call 10_Deallocate ; free up buffer
jmp Sync90
R A R A A R R R R)
H SLAVE NORMAL MODE
;
H Wait for “Start" semaphore, issue “ready" then wait for "continue"

Slave_Normal:

push cs ; push address of Semaphore
lea ax, SYNCHRO_SEMAPHORE

push ax

call VRTIF_Wait ; do a wait

H issue a "ready" message

sub sp,6 ; skip parameter stuff
lea ax,SLAVE_READY_PROFILE ; profile
push ax
sub sp,6 ; skip MY_TID, ENTRY, and TID
mov ax,DEF_sync_ready ; command
push ax
xor ax,ax ; PID of master is always zero
push ax
call 10_Xmit : send message
push cs
lea ax, CONTINUE_SEMAPHORE
push ax ; wait for the “go ahead"
call VRTIF Wait
; atl done
Sync90:
mov (SYNC_PHASE]1,0 ; NO longer in Sync Phase!
pop es
pop ds
pop di
pop si
pop dx

-287-

Distributed Issues Final Report

pop €x
pop bx
pop ax
ret
align &
MASTER_SYNC_PROFILE dw 1 ; provide 1 param: config record
dw DEF_IN ; mode in
dw -3 ; number of bytes in record
MASTER_SYNC_DATA_PTR dw ? ; segment address
dw offset CONFIG
MASTER_CONTINUE_PROFILE dw 0 ; No parameters
SLAVE_READY_PROFILE dw 0 ; nNo parameters

CONFIG_RECORD struc

ROCKETS dw ? ; NUM_ROCKETS
TARGETS dw ? ; NUM_TARGETS
SELECT dw ? ; MODE_SELECT

CONFIG_RECORD ends

CONFIG CONFIG_RECORD <>

RETRY_COUNT dw ?

CPU_COUNT dw ?

CPU_PTR dw ?

REMOTE_INDEX dw ?

Attempt db 13,10,’Trying To Sync With: /,0

Failure db ! : Synchronization Failed’,0

Success db ! 1 Synchronization Succeeded’,0
sync_Complete db 13,10, ? SYNCHRONIZATION COMPLETED',13,10,0
crif db 13,10,0

Period db r. 0

Slave_sync db 'Slave Mode, Trying to Synchonize...’,0

cseg ends

END

-288-

Distributed Issues Final Report

page 55,132

TITLE Setup - Distributed Ada Network Initialization
R R R R R R R R R R R R R R
FILE: DA_SETUP.ASM H
Distributed Ada - Setup H
This module initilizes the network to prepare for distributed H
processing. H
Copyright(C) 1989, Labiek Corporation, Woodbridge, CT. USA H
P P P M

.model large

public Setup

public PID ; processor 1D

public NET_TABLE ; addresses indexed 8 per PID

include DA_HW.ASM

Setup:

cseg segment common
assume cs:cseg,ds:cseg,es:cseg
org 1COOH
mov dx,cntri ; Gate array controller

mov al,eth_enable_reset

out dx,al

mov al,eth_disable_reset

out dx,al

mov al,eth_access_prom

out dx,al

mov ¢x,6

mov ax,cs

mov es,ax ; set es:di to receive board
mov di,offset BOARD_ADDRESS ; address from prom
mov dx,prom_address_0

GET_ADDRESS:

in al,dx
stosb

inc dx

loop GET_ADDRESS

mov dx,cntri
mov al,eth_recv_select
out dx,al

select no-sharing adapter,
and external transceiver

mov dx,gacfr ; 8K of memory mapped space,
mov al,eth_lan_config ; with interrupts enabled
out dx,al

mov dx,dqtr
mov al,eth_rem DMA_burst

of bytes to transfer on
a remote DMA burst (n/a)

-289-

Distributed Issues Final Report

dx,at

dx.idcfr
al,eth_irq_line
dx,al

dx,damsb
al,eth_rem_DMA_config
dx,al

dx,pstr
al,eth_recv_buf_start
dx, al

dx,pspr
al,eth_recv_buf_end
dx,al

dx,NIC_cr
al ,eth_nic_stop
dx,al

dx,NIC_dcr
al ,eth_nic_DMA_config
dx,al

dx,NIC_rbcro0
al ,eth_remote_DMA_lo
dx,al

dx,NIC_rber1
al ,eth_remote_DMA_hi
dx,al

dx,NIC_rcr
al,eth_packet_types
dx,al

dx,NIC_tcr
al,eth_nic_mode
dx,al

dx,NIC_bndy
al,eth_bndy_start
dx,al

dx,NIC_pstart
al,eth_recv_buf_start

dx,at

dx,NIC_pstop

; interrupt IRQ and DMA
; channel selection (DMA n/a)

; 8k configuration for remote
; DMA. Not used, but minimum
; value needed

; start of receive buffer.
; Value MUST match that in
; NIC_pstart

; end of receive buffer.
; Value MUST match that in

; NIC_pstop

; Stop NIC activity

; local DMA transfers as
; 8 byte bursts

; remote DMA setup (remote
; DMA not used, only local
; used)

; hi byte of # of bytes to
; transfer during a remote

; DMA operation

; accept only good packets

; go into internal {(oopback
; mode to finish programming
; (see anomalies - p. 52)

; overwrite protection rgtr.

; (protects unread packets)

; start of receive queue

; end of receive queue

-290-

Distributed Issues Final Report

mov al,eth_recv_buf_end
out dx,al

mov dx,NIC_isr ; clear interrupt status
mov al,eth_int_status
out dx,al

mov dx,NIC_imr ; keep interrupts off

mov al,eth_ints_disabled ;

out dx,al H

mov dx,NIC_cr ; access page 1 registers

mov al,eth_access_page_1
out dx,al

mov dx,phys_address_0 ; let NIC know its address
mov ax,cs

mov ds,ax

mov si,offset BOARD_ADDRESS ; from the prom

cld

mov c¢x,6 ; number of addresses to give
GIVE_ADDRESS:

lodsb

out dx,al

inc dx

loop GIVE_ADDRESS ; load all addresses

mov dx,NIC_curr load current receive pointer

mov al,eth_recv_buf_start with pstart
out dx,al
mov dx,NIC_cr ; access page 0 registers

mov al,eth_access_page 0
out dx,al

mov dx,NIC_cr
mov al,eth_start_nic
out dx,al

start NIC chip

-

mov dx,NIC_tcr ; exit internal loopback mode
mov al,eth_exit_mode
out dx,al

mov ax,net_memory_seg ; initialize LAN memory to

mov es,ax ; zeroes

mov cx,net memory_size/2 ; in words

xor di,di ; start at begin of segment

cld

mov ax,0000 ; initialization value
FILL:

stosw

-291-

Distributed Issues Final Report

loop FILL

; Now check our address against the known Ethernet addresses to determine
; our processor ID

mov ax,cs

mov es,ax ; ds already = cs

mov bx,0 ; init processor iD

mov di,offset NET_TABLE

cld ; search direction = increment
Search:

push di ; save start of current net addr

mov c¢x,3 ; three words per address

mov si,offset BOARD_ADDRESS

repe cmpsw

pop di ; restore current table index

jz Found

add di,8 : go to next index

inc bx ; count processor id

cmp bx,NET_COUNT ; see if all searched

jnz Search ; loop back if more

H
; If not found, it will return processor id = NET_COUNT

Found:
mov [PID],BX ; record Processor 1D
ret ; done with Setup
align 2

; VALID PROCESSOR ID’s Determined by Ethernet ADDRESS

; 0 - ALPHA

; 1 - BRAVO

: 2 - CHARLIE

PID dw ? ; Processor ID
BOARD_ADDRESS db 6 dup (?) ; holds board address

; PROCESSOR STATION ADDRESS TABLE

NET_COUNT equ 6 ; number of processor on net

NET_TABLE label byte
db 02H, 60H, 8CH, 47H, 63H, 55H,0,0 ; processor Bravo 1 VENUS
db 02H, 60H, 8CH, 47H, 61H, 82H,0,0 ; processor Alpha 0 EARTH
db 024, 60H, 8CH, 4BH, S1H, 60H,0,0 ; processor Charlie 2
db 02H, 60H, 8CH, 58H, 35H, 68K,0,0 ; processor Delta 3
db 02H, 60H, 8CH, 02H, OOH, S58H,0,0 ; processor Echo 4

-292-

Distributed Issues Final Report

db 02H, 60H, BCH, 44H, S52H, O9H,0,0 ; processor Foxtrot 5
cseg ends

END

-293-

Distributed Issues Final Report

page 55,132
TITLE DA - Distributed Ada Module

DA - Distributed Ada Module

; Copyright(C) 1989, LabTek Corporation, Woodbridge, CT USA H
R R R R R R R R A R R R R]
: h

This code is code that would be part of the runtime system, but ;

; must be linked in to replace some part of the regular runtime ;

; routines. It is Linked to the runtime via (hand) editing.

; Since the compiler does not supply information H

; on the parameters in the code (it is implicitly maintained by H

; the compiler amoung entry call/accept pairs), tables are placed
here to provide the information.

; Each packet header is statically formed and placed in this

; module to be reference by the TRANSMIT CONTROL PTR (TCP) used in
; the rurtime call parameter list. This reduces the overhead
;

associated with packetizing the data. These packet headers ;
: could be generated by the compiler/linker/distributor and ;
; optimally would be placed in the controller card mennry at ;

; elaboration time so that loading of header data would be
; necessary.

Ver Date Description
; 0.1 Nov-88 : Initial prototype

; 0.2 Dec-89 : Enhanced to support error detection and dynamic
H configuration

¢

include DA_DEF.ASM

.mode{(large

public Shut_down ; prints out msg, and restarts
public COLD_START ; NZ if this i. cold start

public MODE_SELECT ; Selected Operating Mode

public SYNC_PHASE ; During startup to synchronize CPUs
public Print ; for sync printout

public MASTER ; for sync

public NUM_TARGETS ; for sync Config set

public NUM_ROCKETS ; for sync Config set

extrn Initialize:near ; (rte)

-294-

extrn
extrn
extrn
extrn
extrn
extrn

cseg segment
; BIOS Vectors
int10

int16
initial_imask
da_base
upper_case
EGA_ROM_SEGMENT
ROM_PRESENT

STACK_SIZE
MAX_ROCKETS
MAX_TARGETS
MAX_MODE
ERROR_DELAY

FLOPPY_STOP
FLOPPY_DIGITAL

assume

Ack_Check:near
Sync:near

VRTIF_APPLICATION: far :

VRTIF_18259:abs
DTCB_INIT:near
P1D:word

common

Distributed Issues rinal Report

; (o)

; synchronize procedure
(vrtif)

; (vrtif)

; (dteb)

; processor id (Setup)

equ 40H

equ 58H

equ OFDH ; mask off all but keyboard
equ 3000k ; segment for da runtime

equ ODFH ; mask for upper case characters
equ 0COO0H

equ 0AASSH

equ 200 ; bytes in local stack

equ 20 ; BDS maximum # rockets

equ 50 ; BDS maximum # targets

equ 4 ; BDS maximum mode value

equ 70H ; delay roughly 5 seconds

equ OCH ; Shuts off motors

equ 3F2H ; address of digital ctrl reg.

cs:cseg,ds:cseg,es:cseg

; The following jump table provides (static) control transfers from the
; Ada application code to the respective support code located here

align
imp
align
imp
align
imp
align
imp
align
jmp
align
imp
align
test
jt
imp

No_EGA: iret

8

Restart

8

Ack_Check

8
Get_Master
8
Get_Rockets
8
Get_Targets
8

Get_Tasks

8

word ptr cs: (EGA_

No_EGA

dword ptr cs:[BIOS_VIDEO] ;

00

prior to elaboration

08

Check on Acknolwedgment of Messages

10

Returns a boolean if this is the master
18

Returns the number of Rockets Configured
20

returns the number of Targets Configured
28

; returns the number of Guide VTasks Configured
; 30
PRESENT] ,OFFFFH

vector to current EGA location
simply skip any EGA activity

-295-

Restart:

mov

Error_Restart:

’

'

'

cli

Distributed Issues Final Report

Restart to initialize the network hardware and configure the system

cs: [AUTO],0 ; clear auto configure mode
dx,VRTIF_18259+1 ; address of interrupt mask register
al,initial_imask ; initial interrupt mask

dx,al ; set mask

SETUP TEMPORARY STACK

call

ax,seg sseg

ss,ax

ax,STACK_SIZE

sp, ax

clear ; @@ this is fix for compiler bug

SETUP DATA SEGMENT

mov
mov

ax,cs
ds,ax

CHECK COLD_START FLAG

test

[COLD_START] ,OFFFH
Warm_start

R R

COLD START ..

push

. FIRST RELOCATE TO SEGMENT 3000

ax,da_base ; first move stack segment
es,ax ; save for later relocation of code/data
cx,cs
ax,cx ; compute diff between load and base addr
cX,SS ; now adjust stack segment
ax,cx
ss,ax
cx,8000H
si,0FFFEH
di,OFFFEH
; auto decrement
movsw

ax,da_base
ds,ax

ax
ax,continue
ax

-296-

Distributed Issues Final Report

retf ; switch to 3000: segment

; Shut off floppy motor

'

continue:
mov al,FLOPPY_STOP
mov dx,FLOPPY_DIGITAL
out dx,al

; Get BIOS Vectors

mov ax,0

mov es,ax ; point to zero page
mov ax,es: {int10]

mov word ptr (BIOS_VIDEO],ax

mov ax,es: [(int10+2]

mov word ptr [BIOS_VIDEO+2],ax

mov ax,es: [int16)

mov word ptr [BIOS_KB],ax

mov ax,es: [int16+2]

mov word ptr [BIOS_KB+2],ax
mov ax,EGA_ROM_SEGMENT

mov es,ax

cmp word ptr es: (0] ,ROM_PRESENT

inz warm_start ; if not present Leave flag zero
mov [EGA_PRESENT] ,1 ; otherwise set flag

Warm_start:

call Initialize ; Initialize Ethernet Board
mov [SYNC_PHASE] 1 ; set synchronization phase
cmp (PID],0 ; see if we are the master
jz Master_CPU ; go on if master

jmp Slave

;
; if here, this is the master processor with a console
;

Master_CPU:

mov [MASTER] ,1 ; indicate this is the master
test [FATLURE] ,OFFFFH ; see if display already setup
jnz skip_display

call Set_Display
skip_display:

mov [FAILURE},O ; default is no failure (for next time)
sti ; enable interrupts now for master mode
test {AUTO] ,OFFFFH ; see if in auto reconfiguration mode
jnz Automatic
call Configure ; perform Configuration
jmp TCB_setup

Automatic:

call Auto_Configure

-297-

Distributed Issues Final Report

jmp TCB_Setup ; go on and setup tasks

if slave mode, do not attempt to configure, this is
done during the SYNC_PHASE sync procedure

Slave:
mov [MASTER],0 ; indicate THIS is not a master
sti ; enable interrupts for slave mode
TCB_Setup:

; Determine number of Guidance Tasks

call Sync ; perform a synchronize

mov si, (MODE_SELECT] ; get selected mode

dec si ; model => offset O

add si,si ; double for word index

mov ax,GUIDE_TABLE[sil

mov [NUM_TASKS],ax ; set number of tasks

call DTCB_Init ; Initialize Task/Processor Directory

; Go execute Application Code

mov [COLD_STARTI,0 ; FINISHED WITH INITIALIZATION!
imp VRTIF_APPLICATION

R R A A R R R R R R R R R R R R R R R R

; CONFIGURE - This routine sets the distributed system configuration

Configure:
mov si,offset ANNOUNCE
call Print

rock00:

call Get_Char
and al,upper_case

catt Put_Char ; Echo Response
cmp al,’y’

jnz Configure

mov si,offset ROCKET_QUES

call Print

call Get_Num

or ax,ax

jle rock_error

cmp ax,MAX_ROCKETS
jle rock20

rock_error:

rock20:

mov si,offset BAD_ROCKETS
call Print
jmp rock00

-298-

Distributed Issues Final Report

mov [NUM_ROCKETS] , ax
targ00:

mov si,offset TARGET_QUES

call Print

call Get_Num

or ax, ax

jle targ_error

cmp ax,MAX_TARGETS

ile targ20

targ_error:
mov si,offset BAD_TARGETS
call Print
jmp targ00

targ20:
mov [NUM_TARGETS] , ax
mode00:
mov si,offset MODE_QUES
call Print
catl Get_Num
or ax,ax
ile mode_error
cmp ax,MAX_MODE
jle mode20
mode_error:
mov si,offset BAD_MODE
call Print
jmp mode00
mode20:
mov [MODE_SELECT] ,ax ; establish mode
mov si,offset AUTO_QUES ; see if auto reconfiguration desired
call Print
catl Get_Char
and al ,upper_case
call Put_Char
cmp al, 'y’
jnz auto_no
mov {auto} ,1
mov si,offset DELAY_QUES ; if auto, check if delay desired
call Print
call Get_Char
and al ,upper_case
call Put_Char
cmp al,’y!
jnz delay_no
mov (DELAY], 1
jmp config_done
auto_no:

-299-

Distributed Issues Final Report

mov {AUTO],0 ; shut off automatic mode
delay_no:
mov (DELAY],O

config_done:
ret

sesessnenaass seennosea
R A R R R R E R R NN R]

-
-~
..
'
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-.
.
e
-
-

~e
-

AUTO_CONFIGURE - This routine sets the distributed system configuration
using an automatic allocation algorithm.

-y ms me we =

Auto_Configure:

mov [MODE_SELECT],1 ; for now, default to uniprocessor
test [DELAY] ,OFFFFH ; see if we should delay

jz auto10 ; if fast reconfigure requested
lea si,DELAY_MSG

call Print

mov ax,ERROR_DELAY

call DELAY_toOP
auto10:

ret

Delay_Loop:

xor cX,cx
delay_loop10:

Loop delay_loop10

dec ax
jnz detay_loop10
ret

........ secsesssssE Rt asensansrsasesseneseneten s R
R N N N N NN NN N NN NN NN NN

© ~e
=
o
[ad
L 4
o
3
»x

; N
: SHUT_DOWN - Causes a message to be displayed indicat
H error, and then jumps to Restart

: This routine is entered only by the ACKCHECK service, therefore all

H interrupts are currently disabled.

.
’

Shut_Down:

cli

mov dx,VRTIF_18259+1 ; address of interrupt mask register
mov al,initial_imask ; initial interrupt mask

out dx,al ; set mask

mov ax,cs

mov ds, ax

mov (FATLURE] 1 ; indicate we have a failure

mov dx,03CEH ; 23a straighten out display

mov a(,s

out dx,al

mov dx,03CFH

-300-

mov al,0

out dx,al

call Set_Display
lea si,NET_ERROR
call Print

jmp Error_Restart

Distributed Issues Final Report

; make sure display of all bits

R R

; Get_Master

Get_Master:
push ds
mov ax,cs
mov ds,ax
mov ax, [MASTER]
pop ds
retf

ll'lllllllllllIlllllllI'lllll'llllllllllIllIlllllllllllllIlllllllll'llll

; Get_Rockets

Get_Rockets:
push ds
mov ax,cs
mov ds, ax
mov ax, [NUM_ROCKETS]
pop ds
retf

lllllllllll'llllllllllll1'lllllllllllllllllllIlllIllllllllllllllllllllll

; Get_Targ>ts

Get_Targets:
push ds
mov ax,cs
mov ds,ax
mov ax, [NUM_TARGETS]
pop ds
retf

; Get_Tasks

Get_Tasks:
push ds
mov ax,cs
mov ds,ax
mov ax, [NUM_TASKS)
pop ds
retf
Jiiiiiiieiiiiciiiiiiiiig
; PRINT - print string po
;

inted to by SI until null

-301-

BIOS_WRITE equ
PAGE_SELECT equ
COLOR equ
WINDOW_TOP equ
WINDOW_BOTTOM equ
SCROLL equ
CLEAR_DISPLAY equ
GETCURSOR equ
SETCURSOR equ
cr equ
Lf equ
bs equ
index_reg equ
display_select equ
mode0 equ
mask_select equ
mask_bits equ

sequence_reg equ
map_mask equ

0%h

1fH

0000H
184 fH
0601H
06004
0300H
0200H
000dH
000aH
0008H

03ceH

OffH
03C4H

Distributed Issues Final Report

; write color/attribute

; background blue, forground red
; row=0 col=0

; row=24 col=79

; scroll up 1 row

; scroll 0 = clear screen

; EGA index control register

; select mask register
; turn all bits on

; Set_Display - insures that the display bit mask has all bits turned on.

H This is only necessary when switching from bit grahics

.
1
.
’

Set_Display:

modes where typically only one bit is enabled.

test word ptr (EGA_PRESENT],OFFFFH

jnz Set_Displayl0
ret
Set_Displayi0:
mov ax, 2
pushf

call dword ptr {BIOS_VIDEO]

mov ax,CLEAR_DISPLAY
mov cx,WINDOW_TOP
mov dx,WINDOW_BOTTOM

mov bh, COLOR

; push flags (simulate INT 10H)

; point to data register

pushf
calt dword ptr (B1OS_VIDEO]
ret

H mov dx, index_reg

; mov al,display_select

; out dx,al

; inc dx

: mov al ,mode0

H out dx,al

-302-

|

Distributed Issues Final Report

; mov dx, index_reg
; mov al,mask_select
H out dx,al
H inc dx ; point to data register
H mov al,mask_bits ; set mask
; out dx,al
h
H mov dx,sequence_reg
; mov at,map_mask
; out dx,al
H inc dx
; mov al,mask_bits
H out dx,al
H
ret

Print - write text pointed at by SI until null (0) is encountered

’

Print:
cld
print10:
lodsb
or al,al ; end of string?
jz print_end
call Put_Char . BIOS -all preserves direction flag
jmp Print10
print_end:
ret

‘
; Put_Char- writes character in AL on screen

Put_Char:
test word ptr [EGA_PRESENT] ,OFFFFH ; see if screen
jnz Put_char10
ret

Put_Char10:

push ax

cmp al,cr ; Carriage return?
jz put_char_cr

cmp al,lf ; line feed

iz put_char_if

cmp al,bs ; back space

jz put_char_bs

mov ah,BI0S_WRITE H

mov bh,PAGE_SELECT ; select page

mov bl,COLOR ; set color

mov cx,1 ; 1 character
pushf ; push flags (simulate INT 10H)

-303-

put_char_cr:
mov
mov
pushf
call

pushf
call

imp

put_char_Lf:
mov
mov
pushf
call

put_char_bs:

Distributed Issues Final Report

dword ptr (BIOS_VIDEO)
ax,GETCURSOR
bh, PAGE_SELECT

dword ptr (BIOS_VIDEO]

ax, SETCURSOR
bh,PAGE_SELECT
dt

dword ptr [BIOS_VIDEO]
Put_Char_end

ax, GETCURSOR
bh,PAGE_SELECT

dword ptr [810S_VIDEO]

ax, SETCURSOR
bh, PAGE_SELECT
diL,o

dword ptr [BIOS_VIDEO]
Put_char_end

ax, GETCURSOR
bh,PAGE_SELECT

dword ptr (BIOS_VIDEO]

dh,24
put_char_Lf10
dh

ax, SETCURSOR
bh,PAGE_SELECT

dword ptr [BIOS_VIDEO)
Put_char_end

ax,SCROLL
cx,WINDOW_TOP
dx,WINDOW_BOTTOM
bh,COLOR

dword ptr (B10S_VIDEQ]
Put_char_end

move Ccurso

r over

reset column

; see if at

at bottom?

if not at bottom of screen, just gc

down 1 mor

if at bott

push flags

bottom of screen

e line

om, then scroll

(simulate INT 10H)

-304-

Distributed Issues Final Report

mov ax,GETCURSOR
mov bh, PAGE_SELECT
pushf

call dword ptr (BIOS_VIDEO]

mov ax,SETCURSOR
mov bh,PAGE_SELECT

or dl,dl ; see if already at left margin
jz put_char_bs2

dec dt ; adjust column

pushf

call dword ptr (BIOS_VIDEO)

put_char_bs2:
P Put_char_end

put_char_end:

pop ax

ret
GET_KB equ 0 ; read character (synchronous)
Get_Char:

mov ax,GET_KB

pushf

call dword ptr [B10S_KB]

ret

; Accepts a number from console
; Returns with AX having value (0 if blank line entered)

'

Get_Num:

call Get_Line

mov si,offset LINE_BUFF

mov ax,0 ; init value

mov bx,10 ; decimal numbers

mov ch,0 ; high byte
Get_numi0:

mov cl, [si]

inc si

cmp cl,er ; see if end of line

jz Get_num20

cmp cl,’” ¢ ; also terminate on space

jz Get_num20

cmp cl,’0’

jt get_num_error

cmp cl, !9’

jg get_num_error

mul bx

and cl,0fH

add ax,cx

-305-

imp
Get_num_error:

mov

call

im
Get_num20:

ret

Distributed Issues Final Report

Get_num10

si,offset Input_Error
Print
Get_Num

H Get_Line - fetches line from keyboard until <CR> is entered

; returns with line in LINE_BUFF terminated by <CR>
Get_Line:
mov si,offset LINE_BUFF
get_linel0:
cmp si,offset END_OF_LINE
jz get_line_cr ; force a <CR>
catl Get_Char
cmp al,bs ; backspace?
jz get_line_bs
cmp al,cr
iz get_line_cr
mov {si],al
inc si
call Put_Char
jmp get_line10

get_Lline_bs:
cmp
jz
call

si,offset LINE_BUFF
get_{inel0
Put_Char

al,’ !

Put_Char

al,bs

Put_Char

si

get_Llinel0

al,cr
[si],al
Put_Char
al, lf
Put_Char

; do nothing if at begin of line

; back up buffer pointer

; CLEAR - routine to zero some of memory to compensate for code
H generator error.

Clear:

-306-

Distributed Issues Final Report

mov ax,951bH

mov es,ax

xor ax,ax

mov cx,ax

mov di,ax

cld

rep stosw

ret

align &
; BIOS Actual Routine Addresses
;
BIOS_VIDEO dd ?
BIOS_KB dd ?
EGA_PRESENT dw 0 ; default is not present

T R R R R R R R R T

H CONFIGURATION INFORMATION SUPPLIED TO THE APPLICATION ;
R R R R R R R A R R)

MASTER dw ? ; N2 if this is the master CPU
NUM_ROCKETS dw ? ; max number of rockets to launch
NUM_TARGETS dw ? ; max number of targets to generate
NUM_TASKS dw ? ; number of GUIDANCE tasks

; Indexed by mode

GUIDE_TABLE dw 1 ; mode 1 = 1 guide task
dw 1 ; mode 2 = 1 guige task
dw 1 ; mode 3 = 1 guide task
dw 2 ; mode 4 = 2 guide tasks

sesve e
P T e T aiiaiieiiitiiiiitearieiniiiiitiistiveiisisiseierisieeieieiis

i
; OPERATION CONTROL VARIABLES
H

COLD_START dw 1 ; cold start=1 if first time through
SYNC_PHASE dw ? ; initial synchronization phase
MODE_SELECT dw ? ; selected operating mode

AUTO dw 0 ; default is not automatic mode

DELAY dw 0 ; if a delay before restart is desired
FAILURE dw 0 ; if a network failure occured

LINE_BUFF db 256 dup (?)
END_OF_LINE equ $-1

ANNOUNCE db cr,Lf, Lf

-307-

Distributed Issues Final Report

db ' THE 30RDER DEFENSE
db cr, Lf, Lf
db ‘* DISTRIBUTED Ada !
db 'CONFIGURATION MENU ,cr,Lf,Lf,Lf
db ‘Type ''Y’! to continue: ‘,0
ROCKET _QUES db cr,Uf, Lf, 'Enter Number Of Rockets=> ‘0
TARGET_QUES db cr,Lf, Lf,’Enter Number of Targets=> /,0
MODE_QUES db cr, Uf, Lf, SELECT MODE:’,cr,Lf
db ! 1 = Single Processor’,cr,Lf
db ! 2 = Dual (AB) Processor’,cr, Lf
db ! 3 = Dual (AC) Processor!,cr, lf
db ' 4 = Triple Processor’,cr, lf
db 'MODE => ’,0
AUTO_QUES db cr, lf,Lf, ‘Automatic Reconfiguration? (Y) : 1,0
DELAY_QUES db cr, Uf, Lf,'Delay before Reconfiguration? (Y) : /,0
BAD_ROCKETS db cr,lf,’Out Of Range!, Rockets must be between 1 and 20’
db cr,Lf,Lf,’Reenter: ’,0
BAD_TARGETS db cr, lf,’0ut Of Range!, Targets must be between 1 and 50’
db cr,lf,Lf,’Reenter: /,0
BAD_MODE db cr,Lf,’Out Of Range!, Mode must be between 1 and 4’
db cr,lf, Lf, 'Reenter: /,0
INPUT_ERROR db cr,lf,’Invalid Number’
db cr,lf,’Reenter: /,0
NET_ERROR db Lf,lf,” NETWORK TRANSMISSION !
db 'ERROR DEYECTED !,cr, Uf,If,0
DELAY_MSG db 'SYSTEM WILL RESTART IN FIVE SECONDS...’,cr, if,lf,0

cseg ends

sseg segment STACK
db STACK_SIZE dup (0)
sseg ends

end

-308-

Distributed Issues Final Report

-309-

